Hilbert C* Modules Bibliography

by Prof. Dr. Michael Frank


[1] B. Abadie, On the K-theory of non-commutative Heisenberg manifolds, Ph.D. thesis, Univ. of California at Berkeley (1992).

[2] B. Abadie, “Vector bundles” over quantum Heisenberg manifolds, in: Algebraic Methods in Operator Theory, edited by R. Curto and P. E. T. Jørgensen (Birkhäuser, Boston - Basel - Berlin, 1994), p. 307-315.

[3] B. Abadie, Generalized fixed-point algebras of certain actions on crossed products, Pacific J. Math. 171, 1-21 (1995).

[4] B. Abadie and S. Eilers and R. Exel, Morita equivalence for crossed products by Hilbert C*-bimodules, Trans. Amer. Math. Soc. 350, 3043-3054 (1998).

[5] B. Abadie and R. Exel, Hilbert C*-bimodules over commutative C*-algebras and an isomorphism condition for quantum Heisenberg manifolds, Rev. Math. Physics 9, 411-423 (1997).

[6] B. Abadie and R. Exel, Deformation quantization via Fell bundles, Math. Scand. 89, 135-160 (2001).

[7] B. Abadie, The range of traces on quantum Heisenberg manifolds, Trans. Amer. Math. Soc. 352, 5767-5780 (2000).

[8] F. Abadie, Envelopping actions and Takai duality for partial actions, J. Funct. Anal. 197, 14-67 (2003).

[9] B. Abadie, Morita equivalence for quantum Heisenberg manifolds, Proc. Amer. Math. Soc. ???, ??? (2005).

[10] B. Abadie and M. Achigar. Cuntz-Pimsner C*-algebras and crossed products by Hilbert C*-bimodules. 2005. preprint math.OA/0510330 at www.arxiv.org.

[11] B. Abadie and K. Dykema. Unique ergodicity of free shifts and some other automorphisms of C*-algebras. 2006. preprint math.OA/0608227 at www.arxiv.org.

[12] B. Abadie. Takai duality for crossed products by Hilbert C*-modules. 2007. preprint math.OA/0709.1122 at www.arxiv.org.

[13] Gh. Abbaspour Tabadkan and M. S. Moslehian and A. Niknam. Dynamical systems on Hilbert C*-modules. 2005. preprint math.OA/0503615 at www.arxiv.org, to appear in Bull. Iranian Math. Soc.

[14] Gh. Abbaspour Tabadkan. An extension of a ternary derivation on a Hilbert C*-module. 2007. Extended Abstracts, 16th Seminar on Math. Anal. and its Appl. (SMAA16), Ferdowsi University, Mashhad, Iran, Febr. 4-5, 2007, pp. 1-3.

[15] G. Abrams and M. Tomforde. Isomorphism and Morita equivalence of graph algebras. 2008. preprint math.OA/0810.2569 at www.arxiv.org.

[16] L. Accardi and Yun-Gang Lu, On the weak coupling limit for quantum electrodynamics, in: Probabilistic methods in mathematical physics (Siena, 1991) (World Sci. Publ., River Edge, NJ, 1992), p. 16-29.

[17] L. Accardi and Yun-Gang Lu, From the weak coupling limit to a new type of quantum stochastic calculus, in: Quantum Probability and Related Topics (QP-PQ VII, World Sci. Publ., River Edge, NJ, 1992), p. 1-14.

[18] L. Accardi and Yun-Gang Lu, Wiener noise versus Wigner noise in quantum electrodynamics, in: Quantum Probability and Related Topics (QP-PQ VIII, World Sci. Publ., River Edge, NJ, 1993), p. 1-18.

[19] L. Accardi and Yun-Gang Lu, The Wigner semi-circle law in quantum electro dynamics, Commun. Math. Phys. 180, 605-632 (1996).

[20] L. Accardi and Yun-Gang Lu and I. V. Volovich. Interacting Fock spaces and Hilbert module extensions of the Heisenberg commutation relations. 1997. IIAS Publications, Kyoto.

[21] L. Accardi and Yun-Gang Lu and I. V. Volovich. White noise approach to classical and quantum stochastic calculi. 1999. preprint, Rome, to appear in Lecture Notes of the Volterra Internat. School of the same title, held in Trento, Italy.

[22] L. Accardi and M. Skeide. Interacting Fock space versus full Fock module. 1998. preprint, University of Rome, Rome, Italy.

[23] L. Accardi and M. Skeide, Hilbert module realizations of the square of white noise and the finite difference algebra (Russ./Engl.), Mat. Zametki 68, 803-818 /Math. Notes 68(2000), 683-694 (2000).

[24] L. Accardi and M. Skeide. Interacting Fock space versus full Fock module. 2000. preprint, Rome, 1998, revised.

[25] L. Accardi and A. Boukas, The unitary conditions for the square of white noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 197-222 (2003).

[26] L. Accardi and Y. G. Lu, Free probability and quantum electrodynamics, Rep. Math. Phys. 53, 401-414 (2004).

[27] S. Albeverio and Sh. A. Ayupov and A. A. Zaitov and J. E. Ruziev. Algebras of unbounded operators over the ring of measurable functions and their derivations and automorphisms. 2007. preprint math.OA/0710.5839 at www.arxiv.org.

[28] M. Amyari and A. Niknam, Inner products on a Hilbert C*-module, J. Anal. 10, 87-92 (2002).

[29] M. Amyari and A. Niknam, On homomorphisms of Finsler modules, Int. Math. J. 3, 277-281 (2003).

[30] M. Amyari, Stability of C*-inner products, J. Math. Anal. Appl. 322, 214-218 (2006).

[31] M. Amyari and M. S. Moslehian, Hyers-Ulam-Rassias stability of derivations on Hilbert C*-modules, Contemp. Math. 724, 31-39 (2007).

[32] C. Anantharaman-Delaroche, On Connes property T for von Neumann algebras, Math. Japonica 32, 337-355 (1987).

[33] C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann. 279, 297-315 (1987).

[34] C. Anantharaman-Delaroche, On relative amenability for von Neumann algebras, Compos. Math. 74 , 333-352 (1990).

[35] C. Anantharaman-Delaroche, On completely positive maps defined by an irreducible correspondence, Can. Math. Bull. 33, 434-441 (1990).

[36] C. Anantharaman-Delaroche and J. F. Havet, On approximate factorizations of completely positive maps, J. Funct. Anal. 90, 411-428 (1990).

[37] C. Anantharaman-Delaroche, Some remarks on the cone of completely positive maps between von Neumann algebras, J. London Math. Soc. (2) 55, 193-208 (1997).

[38] C. Anantharaman-Delaroche, Purely infinite C*-algebras arising from dynamical systems, Bull. Soc. Math. France 125, 199-225 (1997).

[39] E. Andruchow and G. Corach and D. Stojanoff, Geometry of the sphere of a Hilbert module, Math. Proc. Camb. Phil. Soc. 127, 295-315 (1999).

[40] E. Andruchow and D. Stojanoff, Group conditionalexpectations of finite index, Boletin de la Academia Nacional de Ciencias, Cordoba (Argentina) 63, 91-100 (1999).

[41] E. Andruchow and A. Varela. Homotopy of vector spaces. 2000. preprint math.OA/0008144 at www.arxiv.org.

[42] E. Andruchow and A. Varela, Fibre bundles over orbits of states, in: Proceedings Margarita Mathematica en Memoria de José Javier (Chicho) Guadalupe Hernández, Servicio de Publicaciones, Universidad de La Rioja, Logroño, Spain, edited by Luis Espñol and Juan L. Varona (2001), p. 635-659.

[43] E. Andruchow and G. Corach and D. Stojanoff, Projective space of a C*-module, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 289-307 (2001).

[44] E. Andruchow and A. Varela, Homotopy of state orbits, J. Operator Theory 48, 419-430 (2002).

[45] E. Andruchow and A. Varela, C*-modular vector states, Integral Equations Operator Theory 52, 149-163 (2005).

[46] E. Andruchow and A. Varela, Metrics in the sphere of a C*-module, Cent. Eur. J. Math. 5, 639-653 (2007).

[47] M. Anoussis and I. Todorov, Compact operators on Hilbert modules, Proc. Amer. Math. Soc. 133, 257-261 (2005).

[48] Hajime Aoki and Jun Nishimura and Yoshiaki Susaki. Finite.matrix formulation of gauge theories on a non-commutative torus with twisted boundary conditions. 2009. preprint SAGA-HE-247 at Saga University, Saga, Japan, KEK-TH-1279 at High Energy Accelarator Res. Org. (KEK), Tsukuba, Japan, submitted to JHEP.

[49] D. Applebaum, Quantum stochastic parallel transport on non-commutative vector bundles, in: Quantum Probability and Applications, III, Oberwolfach 1987 (Lecture Note Math. 1303 , Springer-Verlag, Berlin, 1988), p. pp. 20-36.

[50] P. Ara, Left and right projections are equivalent in Rickart C*-algebras, J. Algebra 120, 433-448 (1989).

[51] P. Ara, K-theory for Rickart C*-algebras, K-theory 5, 281-292 (1991).

[52] P. Ara and D. Goldstein, A solution of the matrix problem for Rickart C*-algebras, Math. Nachrichten 164, 259-270 (1993).

[53] P. Ara, Morita equivalence and Pedersen ideals, Proc. Amer. Math. Soc. 219, 1041-1049 (2001).

[54] P. Ara and M. Mathieu, Local Multipliers of C*-algebras, Springer Monographs in Mathematics (Springer-Verlag London, Ltd., London, UK, 2003).

[55] P. Ara and M. Mathieu. Maximal C*-algebras of quotients and injective envelopes of C*-algebras. 2007. preprint math.OA/0704.3711 at www.arxiv.org.

[56] P. Ara and F. Perera and A. S. Toms. K-theory for operator algebras. Classification of C*-algebras. 2009. preprint math.OA/0902.3381 at www.arxiv.org.

[57] L. Arambašić, Irreducible representations of Hilbert C*-modules, Math. Proc. Royal Irish Acad. 105A, 11-24 (2005).

[58] L. Arambašić, Frames of submodules for countably generated Hilbert K(H)-modules, Glas. Math. Ser. III 41(61), 317-328 (2006).

[59] L. Arambašić and R. Rajić, On some norm equalities in pre-Hilbert C*-modules, Linear Algebra Appl. 414, 19-28 (2006).

[60] L. Arambašić, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 , 469-478 (2007).

[61] L. Arambašić, Another characterization of Hilbert C*-modules over compact operators, J. Math. Anal. Appl. 344, 735-740, doi: 10.1016/j.jmaa.2008.03.004 (2008).

[62] L. Arambašić and D. Bakić and M. S. Moslehian, A characterization of Hilbert C*-modules over finite-dimensional C*-algebras, Operators and Matrices 3, 235-240 (2009).

[63] L. Arambašić and R. Rajić, On the C*-valued triangle equality and inequality in Hilbert C*-modules, Acta Math. Hungar. 119, 373-380 (2008).

[64] L. Arambašić and R. Rajić, Ostrowski's inequality in pre-Hilbert C*-modules, Math. Ineq. Appl. 12, 217-226 (2009).

[65] L. Arambašić and D. Bakić and M. S. Moslehian. Gram matrix in C*-modules. 2009. preprint math.OA/0905.3509 at www.arxiv.org.

[66] Mrs. Ariyani, The Generalized Continuous Wavelet Transform on Hilbert Modules, Ph.D. thesis, University of New South Wales, Sydney, Australia, http://handle.unsw.edu.au/1959.4/39820 (2008).

[67] A. V. Arkhangel'skij, General Topology - 2 (russ.), Itogi nauki i tekhniki, Sovrem. probl. mat., fund. naprawl., v. 50 (VINITI, Moscow, 1988).

[68] W. Arveson, C*-algebras associated with sets of semigroups of isometries, Internat. J. Math. 2, 235-255 (1991).

[69] V. A. Arzumanian and S. A. Grigorian, Invariant algebras of operator fields on compact abelian groups (russ./engl.), Izv. Akad. Nauk Armyan. SSR, Ser. Mat. 25, no. 4, 333-343 / Soviet J. Contemp. Math. Anal. 25(1990), no. 4, 20-31 (1990).

[70] M. B. Asadi, Hilbert C*-modules and *-isomorphisms, J. Operator Theory 59, 431-434 (2008).

[71] M. B. Asadi and A. Khosravi, A Hilbert C*-module not anti-isomorphic to itself, Proc. Amer. Math. Soc. 135, 263-267 (2007).

[72] B. Ashton, Morita equivalence of graph C*-algebras, Ph.D. thesis, Honours Thesis, University of Newcastle, Callaghan, New South Wales, Australia (1996).

[73] A. Astashkevich and A. Schwarz, Projective modules over non-commutative tori: classification of modules with constant curvature connection, J. Operator Theory 46, 619-634 (2001).

[74] M. F. Atiyah and R. Bott and A. Shapiro, Clifford modules, Topology 3, suppl. 1, 3-38 (1964).

[75] P.-L. Aubert, Théorie de Galois pour une W*-Algèbre, Comment. Math. Helvetici 51, 411-433 (1976).

[76] N. Azarnia, Dense operator on a KH-module, Rend. Circ. Mat. Palermo 34, 105-110 (1985).

[77] E. Azoff, Kaplansky-Hilbert modules and self-adjointness of operator algebras, Amer. J. Math. 100, 957-972 (1978).

[78] S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens, C. R. Acad. Sci. Paris, sér. 1 296, 875-878 (1983).

[79] S. Baaj and G. Skandalis, C*-algèbres de Hopf et théorie de Kasparov équivariante, K-theory 2, ??? (1989).

[80] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. Éc. Norm. Sup., 4e sér. 26, 425-488 (1993).

[81] C. Baak and H. Y. Chu and M. S. Moslehian, On linear n-inner product preserving mappings, Math. Inequal. Appl. 9, 453-464 (2006).

[82] F. Bagarello and C. Trapani. Morphisms of certain Banach C*-modules. 2009. preprint math-ph/0904.0891 at www.arxiv.org.

[83] Bhaskar Bagchi, Homogeneous operators and systems of imprimitivity, in: Multivariable Operator Theory, Contemp. Math. 185, Joint Summer Research Conference, Univ. Washington, Seattle, Washington, July 10-18, 1993, edited by R. E. Curto and R. G. Douglas and J. D. Pincus and N. Salinas (1995), p. 109-131.

[84] Bhaskar Bagchi and Gadadhar Misra, Homogeneous operators and systems of imprimitivity, Contemp. Math. 185, 67-76 (1995).

[85] M. Baillet and Y. Denizeau and J.-F. Havet, Indice d'une esperance conditionelle, Comp. Math. 66, 199-236 (1988).

[86] D. Bakić, Hilbert C*-modules over compact adjointable operators, in: Functional Analysis, IV, Aarhus Universitet, Matematisk Institut, Aarhus, Various Publ. Series 43, 278 pp, Proc. Postgraduate School and Conf., Dubrovnik, Nov. 10-17, 1993, edited by D. Butkovic and H. Kraljevic and G. Peskir (1994), p. 7-9.

[87] D. Bakić and B. Guljaš. Quotients of Hilbert C*-modules. 1999. preprint, University of Zagreb, Zagreb, Croatia.

[88] D. Bakić and B. Guljaš, Operators on Hilbert H*-modules, J. Operator Theory 46, 123-137 (2001).

[89] D. Bakić and B. Guljaš, Wigner's theorem in Hilbert C*-modules over C*-algebras of compact operators, Proc. Amer. Math. Soc. 130, 2343-2349 (2002).

[90] D. Bakić and B. Guljaš, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged) 68, 249-269 (2002).

[91] D. Bakić and B. Guljaš, On a class of module maps of Hilbert C*-modules, Math. Commun. 7, 177-192 (2003).

[92] D. Bakić. Notes on extensions of Hilbert C*-modules. 2003. to appear in the Proc. of the Postgraduate School and Conference "Functional Analysis, VII" (Dubrovnik, September 17-26, 2001).

[93] D. Bakić. A class of strictly complete Hilbert C*-modules. 2003. preprint, Univ. of Zagreb, Zagreb, Croatia.

[94] D. Bakić and B. Guljaš, Extensions of Hilbert C*-modules, II, Glas. Mat. Ser. III 38(58), 341-357 (2003).

[95] D. Bakić and B. Guljaš, Wigner's theorem in a class of Hilbert C*-modules, J. Math. Phys. 44, 2186-2191 (2003).

[96] D. Bakić and B. Guljaš, Extensions of Hilbert C*-modules, I, Houston J. Math. 30, 537-558 (2004).

[97] D. Bakić, Tietze extension theorem for Hilbert C*-modules, Proc. Amer. Math. Soc. 133, 441-448 (2005).

[98] J. A. Ball and S. Ter Horst. A W*-correspondence approach to multi-dimensional linear dissipative systems. 2009. preprint math.FA/0906.0988 at www.arxiv.org.

[99] M. Banai, An unconventional canonical quantization of local scalar fields over quantum space-time, J. Math. Phys. 28, 193-214 (1987).

[100] S. Banić and D. Ilišević and S. Varošaneć, Bessel and Gruss type inequalities in inner product modules, Proc. Edinburgh Math. Soc. (2) 50, 23-36 (2007).

[101] S. D. Barreto and B. V. R. Bhat and V. Liebscher and M. Skeide, Type I product systems of Hilbert modules, J. Funct. Anal. 212, 121-181 (2004).

[102] D. Basu, A classifying space for K1(X,R) and extensions of Hilbert modules, Integr. Equ. Oper. Theory 31, 287-298 (1998).

[103] T. Bates, Applications of gauge-invariant uniqueness theorem for graph algebras, Bull. Austral. Math. Soc. 66, 57-67 (2002).

[104] T. Bates and D. Pask, Flow equivalence of graph algebras, Ergodic Theory Dynam. Systems 24, 367-382 (2004).

[105] P. F. Baum and P. M. Hajac and R. Matthes and W. Szymański. Noncommutative geometry approach to principal and associated bundles. 2007. preprint math.DG/0701033 at www.arxiv.org.

[106] P. F. Baum and R. J. Sánchez-García. K-theory for groupC*-algebras. 2009. preprint math.KT/0908.1066 at www.arxiv.org / to appear in Springer Lecture Notes.

[107] H. Baumgärtel, A modified approach to the Doplicher/Roberts theorem on the construction of the field algebra and the symmetry group in superselection theory, Rev. Math. Phys. 9, 279-313 (1997).

[108] H. Baumgärtel and F. Lledó, Superselection structures for C*-algebras with non-trivial center, Reviews Math. Phys. 9, 785-819 (1997).

[109] H. Baumgärtel and F. Lledó, Dual group actions on C*-algebras and their description by Hilbert extensions, Math. Nachr. 239-240, 11-27 (2000).

[110] H. Baumgärtel and F. Lledó, An application of DR-duality theory for compact groups to endomorphism categories of C*-algebras with non-trivial center, Fields Institute Communications, A.M.S. 30, 1-10 (2001).

[111] H. Baumgärtel and F. Lledó, Duality of compact groups and Hilbert C*-systems for C*-algebras with a non-trivial center, Int. J. Math. 15, 759-812 (2004).

[112] S. Bayramov, On stability of index of Fredholm complexes on the C*-algebras, in: Proc. 16th Int. Conf. of the Jangjeon Math. Soc. (Jangjeon Math. Soc., Hapcheon, Corea, 2005), p. 16-25.

[113] A. Becken, Über linke und rechte Cq × q-de Branges-Hilbertmoduln von meromorphen q × q-Matrixfunktionen im Einheitskreis (Germ.), Ph.D. thesis, Universität Leipzig, Leipzig, Germany (2008).

[114] W. Beer, On Morita equivalence of nuclear C*-algebras, J. Pure and Appl. Algebra 26, 249-267 (1982).

[115] W. Beer, On Morita equivalence of C*-algebras, Ph.D. thesis, Univ. of California, Berkeley, USA (1981).

[116] B. Bekka, Square representable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl. 10, 325-349 (2004).

[117] V. P. Belavkin. The boundary value problem in the Fock Hilbert module associated to quantum stochastic differential equations. 2001. EPSRC VF Grant GR/M66196 for research, 4 papers submitted, Nottingham, England, UK.

[118] A. Ben-Artzi and I. Gohberg, Orthogonal polynomials over Hilbert modules, in: Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and its Applications, Beersheva, Israel, February 24-28, 1992, Basel, Birkhäuser-Verlag, Oper. Theory, Adv. Appl., vol. 73, edited by A. Feintuch et al. (1994), p. 96-126.

[119] J. Benedetto and G. Zimmermann, Sampling multipliers and the Poisson summation formula, J. Fourier Anal. Appl. 3, 505-523 (1997).

[120] S. K. Berberian, On the projection geometry of a finite AW*-algebra, Trans. Amer. Math. Soc. 83, 493-509 (1956).

[121] S. K. Berberian, The regular ring of a finite AW*-algebra, Annals Math. 65, 224-240 (1957).

[122] S. K. Berberian, N×N matrices over an AW*-algebra, Amer. J. Math. 80, 37-44 (1958).

[123] S. K. Berberian, Baer *-rings (Berlin-Heidelberg-New York, Springer-Verlag, 1972).

[124] W. Bergmann and R. Conti, On infinite tensor products of Hilbert C*-bimodules, in: Operator Algebras and Mathematical Physics: Conf. Proc., Constanta, Romania, July 2-7, 2001, edited by J.-M. Combes and J. Cuntz and G. A. Elliott and G. Nenciu and H. Siedentop and S. Stratila (Theta Foundation, Bucharest, 2003), p. 23-34.

[125] P. Bertozzini and R. Conti and W. Lewkeeratiyutkul. Non-commutative geometry, categories and quantum physics. 2008. preprint math.OA/0801.2826 at www.arxiv.org / submitted to East-West Journal of Mathematics, Proc. Internat. Conf. in Mathematics and Appl., Mahidol University, Century Park Hotel, Bangkok, Thailand, Aug. 15-17, 2007.

[126] P. Bertozzini and R. Conti and W. Lewkeeratiyutkul. A spectral theorem for imprimitivity C*-modules. 2008. preprint math.OA/0812.3596 at www.arxiv.org.

[127] B. V. Rajarama Bhat and M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Inf. Dimens. Anal. Quantum Probab. Relat. Top. 3, 519-575 (2000).

[128] B. V. Rajarama Bhat and V. Liebscher and M. Skeide. A problem of Powers and the product of spatial product systems. 2008. preprint math.OA/0801.0042 at www.arxiv.org.

[129] J. Bhowmick and D. Goswami. Quantum Group of Orientation preserving Riemannian Isometries. 2008. preprint math.QA/0806.3687 at www.arxiv.org.

[130] J. Bhowmick and D. Goswami, Quantum isometry groups: examples and computations, Commun. Math. Phys. 285, 421-444 (2009).

[131] J. Bhowmick, Quantum Isometry Groups, Ph.D. thesis, Indian Statistical Institute, Kolkata, India, see http://arxiv.org/abs/0907.0618 (June 2009).

[132] L. C. Biedenharn and L. P. Horwitz, Quaternion quantum mechanics: second quantisation and gauge fields, Ann. Phys. (USA) 157, 432-488 (1984).

[133] L. C. Biedenharn and L. P. Horwitz, Erratum: Quaternion quantum mechanics: second quantisation and gauge fields, Ann. Phys. (USA) 159, 481 (1985).

[134] R. A. Biktashev and A. S. Mishchenko, Spectra of elliptic unbounded pseudodifferential operators over C*-algebras (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 3, 56-58 / Moscow Univ. Math. Bull. 35(1980), no. 3, 59-65 (1980).

[135] R. A. Biktashev, Spectra of pseudodifferential operators over C*-algebras (russ./engl.), Vestnik Moskov. Univ., Ser. I: Mat.-Mekh. no. 4, 36-38 / Moscow Univ. Math. Bull. 37(1982), no. 4, 45-48 (1982).

[136] R. A. Biktashev, Spectra of pseudodifferential operators over C*-algebras (russ.), Trudy Semin. Vektor Tenzor Anal. 21, 259-267 (1983).

[137] B. Blackadar, A stable cancellation theorem for simple C*-algebras, Proc. London Math. Soc. 47, 303-305 (1983).

[138] B. Blackadar, K-theory for Operator Algebras (Springer-Verlag, New York, 1986).

[139] B. Blackadar, Operator algebras. Theory of C*-algebras and von Neumann algebras, Encyclopaedia of Math. Sciences v. 122, Operator Algebras and Non-commutative Geometry III (Springer-Verlag, Berlin, 2006).

[140] E. Blanchard, Déformations de C*-algèbres de Hopf, Ph.D. thesis, Université de Paris 7 (1993).

[141] E. Blanchard, Tensor products of C(X)-algebras over C(X), Astérisque 232, 81-92 (1995).

[142] E. Blanchard, Déformations de C*-algèbres de Hopf, Bull. Soc. Math. France 124, 141-215 (1996).

[143] E. Blanchard, Subtriviality of continuous fields of nuclear C*-algebras, J. reine angew. Math. 489, 133-149 (1997).

[144] E. F. Blanchard and K. J. Dykema, Embedding of reduced free products of operator algebras, Pacific J. Math. 199, 1-19 (2001).

[145] E. Blanchard. Amalgamated free products of C*-bundles. 2005. preprint math.OA/0504459 at www.arxiv.org / to appear in Proc. Edinburgh Math. Soc., 2008.

[146] D. P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109, 709-715 (1990).

[147] D. P. Blecher and Z.-J. Ruan and A. M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89, 188-201 (1990).

[148] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99, 262-292 (1991).

[149] D. P. Blecher and V. I. Paulsen, Explicit construction of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112, 839-850 (1991).

[150] D. P. Blecher, The standard dual of an operator space, Pacific J. Math. 153, 15-30 (1992).

[151] D. P. Blecher and R. R. Smith, The dual Haagerup tensor product, J. London Math. Soc. 45, 126-144 (1992).

[152] D. P. Blecher, A completely bounded characterization of operator algebras, Math. Annalen 303, 227-239 (1995).

[153] D. P. Blecher and C. le Merdy, On quotients of function algebras, and operator algebra structures on lp, J. Operator Theory 34, 315-346 (1995).

[154] D. P. Blecher. Matrix normed categories and Morita equivalence. 1996. preprint, Univ. Houston, Texas, U.S.A.

[155] D. P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136, 365-421 (1996).

[156] D. P. Blecher, On selfdual Hilbert modules, in: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, edited by P. A. Fillmore and J. A. Mingo (1996), p. 65-80.

[157] D. P. Blecher, A new approach to Hilbert C*-modules, Math. Ann. 307, 253-290 (1997).

[158] D. P. Blecher, Some general theory of operator algebras and their modules, in: Operator Algebras and Applications, NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, Proceedings of the Aegean Conference on Operator Algebras and Applications, Phytagorio, Samos, Greece, Aug. 19-28, 1996, edited by A. Katavolos (Kluwer Academic Publishers, Dordrecht, 1997), p. 113-143.

[159] D. P. Blecher, Factorizations in universal operator spaces and algebras, Rocky Mountain J. Math. 27, 151-167 (1997).

[160] D. P. Blecher, Modules over operator algebras, and the maximal C*-dilation, J. Funct. Anal. 169, 251-288 (1999).

[161] D. P. Blecher and P. S. Muhly and Qiyuan Na, Morita equivalence of operator algebras and their C*-envelopes, J. London Math. Soc. 31, 581-591 (1999).

[162] D. P. Blecher and P. S. Muhly and V. I. Paulsen, Categories of operator modules (Morita equivalence and projective modules), Memoirs Amer. Math. Soc. 143, no. 681 (2000).

[163] D. P. Blecher, On Morita's fundamental theorem for C*-algebras, Math. Scand. 88, 137-153 (2001).

[164] D. P. Blecher, The Shilov boundary of an operator space and the characterization theorems, J. Funct. Anal. 182, 280-343 (2001).

[165] D. P. Blecher, A Morita theorem for algebras of operators on Hilbert space, J. Pure Appl. Algebra 156, 153-169 (2001).

[166] D. P. Blecher, Multipliers and dual operator algebras, J. Funct. Anal. 183, 498-525 (2001).

[167] D. P. Blecher, V. I. Paulsen, Multipliers of operator spaces, and the injective envelope, Pacific J. Math. 200, 1-17 (2001).

[168] D. P. Blecher and E. G. Effros and V. Zarikian, One-sided M-ideals and multipliers in operator spaces, I, Pacific J. Math. 206, 287-319 (2002).

[169] D. P. Blecher and C. Le Merdy, Operator Algebras and Their Modules - an Operator Space Approach, London Mathematical Society Monographs, New Series, v. 30. Oxford Science Publications (The Clarendon Press, Oxford University Press, Oxford, 2004).

[170] D. P. Blecher and V. Zarikian, The calculus of one-sided M-ideals and multipliers of operator spaces, Proc. Natl. Acad. Sci. USA 101, 727-731 (2004).

[171] D. P. Blecher and R. Smith and V. Zarikian, One-sided projections on C*-algebras, J. Operator Theory 51, 201-219 (2004).

[172] D. P. Blecher and D. M. Hay and M. Neal. Hereditary subalgebras of operator algebras. 2005. preprint math.OA/0512417 at www.arxiv.org.

[173] D. P. Blecher and V. Zarikian, The calculus of one-sided M-ideals and multipliers of operator spaces, Memoirs Amer. Math. Soc. 179, no. 842, 85pp (2006).

[174] D. P. Blecher and Upasana Kashyap. Morita equivalence of dual operator algebras. 2007. prepring math.OA/0709.0757 at www.arxiv.org.

[175] D. P. Blecher and Upasana Kashyap. A characterization and a generalization of W*-modules. 2007. prepring math.OA/0712.1236 at www.arxiv.org.

[176] D. P. Blecher and M. Neal, Open partial isometries and positivity in operator spaces, Studia Math. 182, 227-262 (2007).

[177] J. Block. Categories of Hilbert modules and small scale structure in the representation theory of groups. 2001. talk at MSRI Berkeley, CA, USA, April 27.

[178] F. P. Boca, On the flip fixed point algebra in certain noncommutative tori, Indiana Univ. Math. J. 45, 253-273 (1996).

[179] Deok-Hoon Boo and Pyung-Lyun Kang and Chun-Gil Park, The sectional C*-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1, 561-579 (1999).

[180] Deok-Hoon Boo and Chun-Gil Park and Won-Gil Park, Strong Morita equivalence for projective non-commutative tori, Far East J. Math. Sci. 2, 597-608 (2000).

[181] F. Brackx and R. Delanghe and F. Sommen and N. Van Acker, Reproducing kernels on the unit sphere, in: Generalized Functions and Their Applications (Varanasi, 1991), Plenum, New York (1993), p. 1-10.

[182] F. Brackx and N. Van Acker, Boundary value theory for eigenfunctions of the Dirac operator, Bull. Soc. Math. Belg. Sèr. B 45, 113-123 (1993).

[183] F. Brackx and F. Sommen and N. Van Acker, Reproducing Bergman kernels in Clifford analysis, Complex Variables Theory Appl. 24, 3-4 (1994).

[184] B. Brenken and J. Cuntz and G. A. Elliott and R. Nest, On the classification of noncommutative tori, III, Contemp. Math. 62, 503-526 (1987).

[185] B. Brenken, C*-algebras associated with topological relations, J. Ramanujan Math. Soc. 19, 35-55 (2004).

[186] B. Brenken, The isolated ideal of a correspondence associated with a topological quiver, New York J. Math. 12, 47-62 (2006).

[187] R. M. Brouwer, A bicategorical approach to Morita equivalence for rings and von Neumann algebras, J. Math. Phys. 44, 2206-2214 (2003).

[188] R. M. Brouwer, A bicategorical approach to Morita equivalence for von Neumann algebras, J. Math. Phys. 44, 2206-2214 (2003).

[189] L. G. Brown and P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific J. Math. 71, 349-363 (1977).

[190] L. G. Brown. Close hereditary C*-subalgebras and the structure of quasi-multipliers. 1985. MSRI preprint no. 11211-85, Purdue University, West Lafayette.

[191] L. G. Brown, Semicontinuity and multipliers of C*-algebras, Canad. J. Math. 40, 865-988 (1988).

[192] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99, 131-149 (1991).

[193] L. G. Brown and J. A. Mingo and N. T. Shen, Quasi-multipliers and embeddings of Hilbert C*-bimodules, Canad. J. Math. 46, 1150-1174 (1994).

[194] L. G. Brown and G. K. Pedersen, On the geometry of the unit ball of a C*-algebra, J. Reine Angew. Math. 469, 113-147 (1995).

[195] N. P. Brown and K. Dykema and D. Shlyakhtenko, Topological entropy of free product automorphisms, Acta Math. 189, 1-35 (2002).

[196] N. P. Brown and F. Perera and A. S. Toms. The Cuntz Semigroup, the Elliott Conjecture, and Dimension Functions On C*-Algebras. 2006. preprint math.OA/0609182 at www.arxiv.org, to appear in J. Reine Angewandte Math.

[197] N. P. Brown and A. S. Toms, Three applications of the Cuntz semigroup, Int. Math. Research Notices IMRN 19, article ID rnm068, 14 pages (2007).

[198] N. P. Brown and A. Ciuperca, Isomorphisms of Hilbert modules over stably finite C*-algebras, J. Funct. Anal. 257, 332-339 (2009).

[199] J. H. Brown. Proper actions of groupoids on C*-algebras. 2009. preprint math.OA/0907.5570 at www.arxiv.org.

[200] N. Brownlowe and I. Raeburn, Exel's crossed product and relative Cuntz-Pimsner algebras, Math. Proc. Cambridge Philos. Soc. 141, 497-508 (2006).

[201] N. Brownlowe and I. Raeburn. Exel's crossed product for non-unital C*-algebras. 2009. preprint math.OA/0908.2671 at www.arxiv.org.

[202] F. M. Brückler, Tensor products of C*-algebras, operator spaces and Hilbert C*-modules, Math. Commun. 4, 257-268 (1999).

[203] F. M. Brückler, A note on Blecher's characterization of Hilbert C*-modules, Glasnik Matematički 36(56), 263-269 (2001).

[204] F. M. Brückler, On Blecher's characterization of Hilbert C*-modules, in: Functional Analysis VII, Proc. Postgraduate School and Conf., Inter-University Centre, Dubrovnik, Croatia, 17-26 Sept., 2001, edited by D. Bakić and P. Pandžić and G. Peskir (2001), p. 97-103.

[205] F. M. Brückler, A contribution to the theory of Hilbert C*-modules and operator spaces (Croatian), Ph.D. thesis, University of Zagreb, Zagreb, Croatia (2002).

[206] F. M. Brückler, A note on extensions of Hilbert C*-modules and their morphisms, Glasnik Matematički Ser. III 39(59), 313-326 (2004).

[207] A. V. Buchina and P. S. Popov, Quasi-orthogonalization of functionals on l2(A), Acta Appl. Math. 68, 123-135 (2001).

[208] B. Bucicovschi, Contributions to complex powers and the zeta function of elliptic pseudodifferential operators, Ph.D. thesis, Ohio State University, OH, USA (2000).

[209] Huu Hung Bui, Morita equivalence of crossed products, Ph.D. thesis, University of New South Wales, Australia (1992).

[210] Huu Hung Bui, Morita equivalence of twisted crossed products by coactions, J. Functional Anal. 123, 59-98 (1994).

[211] Huu Hung Bui, Induced representations twisted by cocycles, Bull. Austral. Math. Soc. 50, 399-404 (1994).

[212] Huu Hung Bui, Morita equivalence of Twisted Crossed Products, Proc. Amer. Math. Soc. 123, 2771-2776 (1995).

[213] Huu Hung Bui, Full coactions on Hilbert C*-modules, J. Austral. Math. Soc. Ser. A 59, 409-420 (1995).

[214] Huu Hung Bui, Crossed products of Hilbert C*-modules, Proc. Amer. Math. Soc. 125, 1341-1348 (1997).

[215] Huu Hung Bui, A Hilbert C*-module method for Morita equivalence of twisted crossed products, Proc. Amer. Math. Soc. 125, 2109-2113 (1997).

[216] A. Bultheel, Orthogonal matrix functions related to the multivariable Nevanlinna-Pick problem, Bull. Soc. Math. Belg., Ser. B 32, 149-170 (1980).

[217] A. Bultheel, Inequalities in Hilbert modules of matrix-valued functions, Proc. Amer. Math. Soc. 85, 369-372 (1982).

[218] U. Bunke, A K-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303, 241-279 (1995).

[219] D. Bures, Abelian subalgebras of von Neumann algebras, Memoirs Amer. Math. Soc. 110, (1971).

[220] D. Burghelea and L. Friedlander and T. Kappeler and P. McDonald, Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal. 6, 751-859 (1996).

[221] D. Burghelea and L. Friedlander and T. Kappeler, Relative torsion for homotopy triangulations, in: Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Amer. Math. Soc., Providence, R. I., Contemp. Math., vol. 231 (1999), p. 37-57.

[222] D. Burghelea and L. Friedlander and T. Kappeler, Torsions for manifolds with boundary and glueing formulas, Math. Nachr. 208, 31-91 (1999).

[223] D. Burghelea and L. Friedlander and T. Kappeler. Relative torsion for representations in finite type Hilbert modules. 2000. ETH-preprint, ETH Zürich, Switzerland.

[224] D. Burghelea and L. Friedlander and T. Kappeler, Relative torsion, Commun. Contemp. Math. 3, 15-85 (2001).

[225] H. Bursztyn and S. Waldmann, Algebraic Rieffel induction, formal Morita equivalence, and applications to deformation quantization, J. Geom. Physics 37, 307-364 (2001).

[226] H. Bursztyn and S. Waldmann, *-ideals and formal Morita equivalence of *-algebras, Int. J. Math. 12, 555-577 (2001).

[227] H. Bursztyn, Morita equivalence in deformation quantization, Ph.D. thesis, Univ. of California at Berkeley, Berkeley, CA, USA (2001).

[228] H. Bursztyn and S. Waldmann, Algebraic Rieffel induction, formal Morita equivalence and applications to deformation quantization, J. Geom. Physics 37, 307-364 (2001).

[229] H. Bursztyn and S. Waldmann, Bimodule deformations, Picard groups and contravariant connections, K-Theory 25, 1-37 (2002).

[230] H. Bursztyn. A survey on Morita equivalence of quantum tori. 2002. preprint, Univ. of Toronto, Toronto, Canada.

[231] H. Bursztyn and S. Waldmann, Completely positive inner products and strong Morita equivalence, Pacific J. Math. 222, 201-236 (2005).

[232] H. Bursztyn and V. Dolgushev and S. Waldmann. Morita equivalence and characteristic classes of star products. 2009. preprint math.QA/0909.4259 at www.arxiv.org.

[233] D. R. Buske, Hilbert modules over the semicrossed product of the disk algebra, Ph.D. thesis, St. Cloud State University, St. Cloud, Minnesota, U.S.A. (1997).

[234] D. R. Buske, Hilbert modules over a class of semicrossed products, Proc. Amer. Math. Soc. 129, 1721-1726 (2001).

[235] A. Buss and R. Meyer. Continuous spectral decompositions of abelian group actions on C*-algebras. 2007. preprint math.OA/0703282 at www.arxiv.org.

[236] A. Buss and R. Meyer. Square-integrable coactions of locally compact quantum groups. 2008. preprint math.OA/0805.1488 at www.arxiv.org.

[237] A. Buss and R. Meyer and Chen Chang Zhu. Non-Hausdorff symmetries of C*-algebras. 2009. preprint math.OA/0907.0339 at www.arxiv.org.

[238] A. Buss. Integrability of dual coactions on Fell bundle C*-algebras. 2009. preprint math.OA/0908.0559 at www.arxiv.org.

[239] M. Cabrera García and J. Martínez Moreno and A. Rodríguez Palacios. Structurable H*-algebras. Univ. de Granada, Spain. preprint 1989.

[240] M. Cabrera García, Hilbert modules on H*-algebras and applications(span.), in: Analysis, 15th Port.-Span. Meeting Math., Evora/Port., 1990, v. II (1991), p. 297-302.

[241] M. Cabrera García and J. Martínez Moreno and A. Rodríguez Palacios, Hilbert modules over H*-algebras in relation with Hilbert ternary rings, in: Nonassociative Algebraic Models, edited by S. Gonzales and Hyo Chul Myung (1992), p. Proc. Workshop, Zaragoza, Spain, 1989, 33-44.

[242] M. Cabrera García and A. El Marrakchi and J. Martínez Moreno and A. Rodríguez Palacios, Bounded differential operators on Hilbert modules and derivations of structurable H*-algebras, Commun. Algebra 21, 2905-2945 (1993).

[243] M. Cabrera García and J. Martínez Moreno and A. Rodríguez Palacios, Hilbert modules revised: Orthonormal bases and Hilbert-Schmidt operators, Glasgow Math. J. 37, 45-54 (1995).

[244] A. Candel, C*-algebras of proper foliations, Proc. Amer. Math. Soc. 124, 899-905 (1996).

[245] Huaixin Cao and Jianwei Zhao, A survey of developments of wavelet analysis (Chin.), Journal of Xianyang Teachers College 17, no. 6, 5-8 (2002).

[246] A. L. Carey and J. Phillips, Algebras almost commuting with Clifford algebras in a II factor, K-theory 5, 445-478 (1991).

[247] A. L. Carey and V. Mathai, L2-torsion invariants, J. Oper. Theory 110, 377-409 (1992).

[248] A. L. Carey and M. Farber and V. Mathai, Determinant lines, von Neumann algebras and L2 torsion, J. Reine Angew. Math. 484, 153-181 (1997).

[249] A. L. Carey and T. Coulhon and V. Mathai and J. Phillips, Von Neumann spectra near the spectral gap, Bull. Sci. Math. 122, 203-242 (1998).

[250] A. Carey and V. Mathai and A. S. Mishchenko, On analytic torsion over C*-algebras, in: Nielsen Theory and Reidemeister Torsion (Warsaw, 1996), Banach Center Publications, Polish Academy of Sciences, Warsaw 49, 43-67 (1999).

[251] A. L. Carey and M. Farber and V. Mathai, Correspondences, von Neumann algebras and holomorphic L2-torsion, Canad. J. Math. 52, 695-736 (2000).

[252] A. L. Carey and J. Phillips and A. Rennie. A noncommutative Atiyah-Patodi-Singer index theorem in KK-theory. 2007. preprint math.OA/0711.3028 at www.arxiv.org.

[253] A. Carey and S. Neshveyev and R. Nest and A. Rennie. Twisted cyclic theory, equivariant KK-theory and KMS states. 2008. preprint math.OA/0808.3029 at www.arxiv.org.

[254] T. M. Carlsen, C*-algebras associated to general shift spaces, Master thesis, University of Copenhagen, Copenhagen, Denmark (2001).

[255] T. M. Carlsen, Operator algebraic applications in symbolic dynamics, Ph.D. thesis, University of Copenhagen, Copenhagen, Denmark (2004).

[256] T. M. Carlsen and N. S. Larsen and A. Sims and S. T. Vittadello. Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems. 2009. preprint math.OA/0906.4825 at www.arxiv.org.

[257] J. F. Carlson and D. N. Clark, Ext for Hilbert modules, Contemp. Math. 137, 113-118 (1992).

[258] J. F. Carlson and D. N. Clark and C. Foias and J. P. Williams, Projective Hilbert A(D)-modules, New York J. Math. 1, 26-38, (Internet: http//nyjm.albany.edu or gopher://nyjm.albany.edu or ftp://nyjm.albany.edu) (1994).

[259] J. F. Carlson and D. N. Clark, Cohomology and extensions of Hilbert modules, J. Functional Anal. 128, 278-306 (1995).

[260] J. F. Carlson and D. N. Clark, Projectivity and extensions of Hilbert modules over A(DN), Michigan J. Math. 44, 365-374 (1997).

[261] P. G. Casazza and M. C. Lammers, Bracket products for Weyl-Heisenberg frames, in: Advances in Gabor Analysis, edited by H. G. Feichtinger and T. Strohmer (Birkhäuser, Boston, Ma., 2003), p. 71-98.

[262] T. Ceccherini and S. Doplicher and C. Pinzari and J. E. Roberts, A generalization of the Cuntz algebras and model actions, J. Funct. Anal. 125, 416-437 (1997).

[263] Ee Chang-Yound and Hoil Kim and Hiroaki Nakajima. Morita equivalence of noncommutative supertori. 2009. preprint hep-th/0909.5613 at www.arxiv.org.

[264] Xiao Man Chen and R. G. Douglas, Localization of Hilbert modules, Mich. Math. J. 39, 443-454 (1992).

[265] Xiaoman Chen and Ronghui Ji. Toeplitz operators and extensions on Hilbert C*-modules. 1996. source: anonymous ftp via ftp.math.iupui.edu in /pub/preprints/. preprint, Dept. Math. Sci., Indiana University - Purdue University, Indianapolis, USA.

[266] Xiao Man Chen and Cheng Jun Hou, Morita equivalence of groupoid C*-algebras arising from dynamical systems, Studia Math. 149, 121-132 (2002).

[267] Xiaoman Chen and Kunyu Guo, Analytic Hilbert Modules (ISBN 1-58488-399-5) (Chapman & Hall / CRC Press, Boca Raton, FL, USA, 2003).

[268] I. Chifan and A. Ioana. On relative property (T) and Haagerup's property. 2009. preprint math.GR/0906.5363 at www.arxiv.org.

[269] J. Chmielińsky and Mohammad Sal Moslehian. Approximately C*-inner product preserving mappings. 2006. preprint math.OA/0601276 at www.arxiv.org.

[270] J. Chmieliński and D. Ilišević and M. S. Moslehian and Gh. Sadeghi, Perturbation of the Wigner equation in inner product C*-modules, J. Math. Physics 49, ??? (2008).

[271] M. D. Choi and E. Christensen, Completely order isomorphic and close C*-algebras need not be *-isomorphic, Bull. London Math. Soc. 15, 604-610 (1983).

[272] M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Funct. Anal. 24, 156-209 (1977).

[273] E. Christensen and G. K. Pedersen, Properly infinite AW*-algebras are monotone sequentially complete, Bull. London Math. Soc. 16, 407-410 (1984).

[274] A. Ciuperca and L. Robert and A. Santiago. Cuntz semigroup of ideals and quotients and a generalized Kasparov stabization theorem. 2007. preprint math.OA/0710.5800 at www.arxiv.org.

[275] A. Ciuperca, Some properties of the Cuntz semigroup and an isomorphism theorem for a certain class of non-simple C*-algebras, Ph.D. thesis, University of Toronto (2008).

[276] A. Ciuperca and G. A. Elliott, A remark on invariants for C*-algebras of stable rank one, Int. Math. Res. Not. IMRN no. 5, Art. ID rnm 158, 33 pp (2008).

[277] J. Clarke, Hilbert C*-modules and their unbounded operators, Ph.D. thesis, University of Leeds, Leeds, England, U.K. (1995).

[278] J. Cnops, A Gram-Schmidt method in Hilbert modules, in: Clifford Algebras and Their Apllications in Mathematical Physics (Montpellier, 1989), Fund. Theories Physics, Kluwer Acad. Publ., Dordrecht, vol. 47 (1992), p. 193-203.

[279] M. A. Coco and M. C. Lammers. A Hilbert C*-module for Gabor systems. 2001. preprint math.FA/0102165 at www.arxiv.org.

[280] I. Colojoarǎ, Théorème d'imprimitivité pour représentations dans les C*-modules de Hilbert, Gen. Math. 2, 3-28 (1994).

[281] F. Combes and H. H. Zettl, Order structures, traces and weights on Morita equivalent C*-algebras, Math. Ann. 265, 67-81 (1983).

[282] F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49, 289-306 (1984).

[283] A. Connes, C*-algébres et géométrie différentielle, C. R. Acad. Sci. Paris 290, 599-604 (1980).

[284] A. Connes. Correspondances. 1980. Manuscriptus.

[285] A. Connes, An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of R, Adv. in Math. 39, 31-55 (1981).

[286] A. Connes, A survey of foliations and operator algebras, Proc. Symp. Pure Math. Amer. Math. Soc. 38, 521-628 (1982).

[287] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. RIMS, Kyoto Univ. 20, 1139-1183 (1984).

[288] A. Connes, Non-commutative differential geometry, Publ. I.H.E.S. 62, 41-144 (1985).

[289] A. Connes and M. A. Rieffel, Yang-Mills for non-commutative two-tori, Contemp. Math. 62, 237-266 (1987).

[290] A. Connes, Introduction à la géométrie non-commutative, Proc. Symp. Pure Math. 50, 91-118 (1990).

[291] A. Connes, Géométrie Non Commutative (InterEditions, Paris, 1990).

[292] A. Connes and J. Lott, The metric aspects of commutative geometry, in: New symmetry principles in quantum field theory (Carghese, 1991), NATO Adv. Sci. Inst. Ser. B Phys., vol. 295 (Plenum, New York, 1992).

[293] A. Connes, Noncommutative Geometry (Academic Press, 1994).

[294] A. Connes and D. Shlyakhtenko. L2-homology for von Neumann algebras. 2003. preprint math.OA/0309343 at www.arxiv.org.

[295] A. Connes and C. Consani and M. Marcolli. Noncommutative geometry and motives: the thermodynamics and endomotives. 2006. preprint.

[296] C. Constantinescu, C*-algebras (5 volumes), North-Holland Mathematical Library v.58-62 (North-Holland Publishing Co., Amsterdam, ISBN 0-444-50749-3/-50750-7/-50751-5/-50752-3/-50753-1, 2001).

[297] C. Constantinescu, W*-tensor products and selfdual Hilbert right W*-modules, Rev. Roumaine Math. Pures Appl. 51, 583-596 (2006).

[298] R. Conti and E. Vasselli. Extensions of automorphisms to C*-crossed products with non-trivial centre. 2007. preprint math.OA/0707.0932 at www.arxiv.org.

[299] K. T. Covard, The Cuntz semigroup as a classification functor for C*-algebras, Ph.D. thesis, Univ. of Toronto, Toronto, Canada (2007).

[300] K. T. Covard and G. A. Elliott and C. Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. 2007. preprint math.OA/0705.0341 at www.arxiv.org, to appear in J. Reine Angewandte Math.

[301] T. Crisp, Corners of graph algebras, Ph.D. thesis, Honours Thesis, University of Newcastle, Callaghan, New South Wales, Australia (2004).

[302] T. Crisp and D. Gow, Contractible subgraphs and Morita equivalence of graph C*-algebras, Proc. Amer. Math. Soc. 134, 2003-2013 (2006).

[303] D. Crocker and A. Kumjian and I. Raeburn and D. P. Williams, An equivariant Brauer group and actions of groups on C*-algebras, J. Funct. Anal. 146, 151-185 (1997).

[304] J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann. 223, 145-153 (1978).

[305] J. Cuntz, K-theory and C*-algebras, Lect. Notes Math. 1046, 55-79 (1986).

[306] J. Cuntz and G. Skandalis, Mapping cones and exact sequences in KK-theory, J. Operator Theory 15, 163-180 (1986).

[307] J. Cuntz and N. Higson, Kuiper's theorem for Hilbert modules, Contemp. Math. 62, 429-435 (1987).

[308] J. Cuntz, A survey on some aspects of non-commutative geometry, Jahresbericht der DMV 95, 60-84 (1993).

[309] R. E. Curto and P. S. Muhly and D. P. Williams, Crossed products of strongly Morita equivalent C*-algebras, Proc. Amer. Math. Soc. 90, 528-530 (1984).

[310] M. Dǎdǎrlat, On homomorphisms of matrix algebras of continuous functions, Pacific J. Math. 132, 227-231 (1988).

[311] M. Dǎdǎrlat and G. Nagy and A. Némethi and C. Pasnicu, Réduction du rang stable topologique dans les C*-algèbres limites inductives, C. R. Acad. Sci. Paris 312, 107-108 (1991).

[312] M. Dǎdǎrlat and S. Eilers, Asymptotic unitary equivalence in KK-theory, K-Theory 23, 305-322 (2001).

[313] M. Damak and V. Georgescu. Hilbert C*-modules and spectral analysis of many-body problems. 2008. preprint 08-105 at mp-arc / math-ph/0806.0827 at www.arxiv.org.

[314] S. Damaville. Régularité d'opérateurs quadratiquements bornés dans les modules de Hilbert. 2004. preprint no. 323, SFB 478 ”Geometrische Strukturen in der Mathematik”, Westfälische Wilhelms-Universität Münster.

[315] S. Damaville, Régularité d'opérateurs non bornés dans les modules de Hilbert, C. R. Acad. Sci. Paris, Ser. I 344, 769-772 (2007).

[316] B. Damir, Hilbert C*-modules over compact adjointable operators, in: Functional Analysis IV, Proc. of the Postgraduate School and Conference, Inter-University Center Dubrovnik, Croatia, Nov. 10-17, 1993, Var. Publ. Ser., vol. 43, edited by D. Butković et al. (Aarhus University, Mat. Institut, Aarhus, Denmark, 1994), p. 7-9.

[317] J. Daughtry and A. Lambert and B. Weinstock, Invariance of spectrum for representations of C*-algebras on Banach spaces, Proc. Amer. Math. Soc. 125, 189-198 (1997).

[318] K. R. Davidson and E. G. Katsoulis. Operator algebras for multivariable dynamics. 2007. preprint math.OA/0701514 at www.arxiv.org.

[319] V. Deaconu, Generalized Solenoids and C*-algebras, Pacific J. Math. 190, 247-260 (1999).

[320] V. Deaconu, Continuous graphs and C*-algebras, in: Operator-Theoretical Methods (Timişoara, 1998) (Theta Foundation, Bucharest, 2000), p. 137-149.

[321] V. Deaconu and P. S. Muhly, C*-algebras associated with branched coverings, Proc. Amer. Math. Soc. 129, 1077-1086 (2000).

[322] V. Deaconu and A. Kumjian and P. S. Muhly, Cohomology of topological graphs and Cuntz-Pimsner algebras, J. Operator Theory 46, 251-264 (2001).

[323] V. Deaconu, Iterating the Pimsner construction, New York J. Math. 13, 199-213 (2007).

[324] V. Deaconu and A. Kumjian and D. Pask and A. Sims. Graphs of C*-correspondences and Fell bundles. 2009. preprint math.OA/0901.0032 at www.arxiv.org / to appear in Indiana Univ. Math. J.

[325] M. De Brabander, The classification of rational rotation algebras, Arch. Math. 43, 79-83 (1984).

[326] K. Deicke, Exterior equivalence for pointwise unitary coactions, Int. J. Math. 12, 63-79 (2001).

[327] K. Deicke and D. Pask and I. Raeburn, Coverings of directed graphs and crossed products of C*-algebras by coactions of homogeneous spaces, Internat. J. Math. 14, 773-789 (2003).

[328] R. Delanghe, On Hilbert modules with reproducing kernel, Lecture Notes Math. 561, 158-170 (1976).

[329] R. Delanghe and F. Brackx, Hypercomplex function theory and Hilbert modules with reproducing kernel, Proc. London Math. Soc. 37, 545-576 (1978).

[330] R. Delanghe, On the extension of linear functionals in modules over an H*-algebra, Simon Stevin 53:no.3, 201-209 (1979).

[331] Y. Denizeau and J.-F. Havet, Correspondances d'indice fini I: Indice d'un vecteur, J. Operator Theory 32, 111-156 (1994).

[332] Y. Denizeau and J.-F. Havet, Correspondances d'indice fini II: Indice d'une correspondance, in: Topics in Operator Theory, Operator Algebras and Applications, 15th International Conference on Operator Theory, Timişoara, Romania, June 6-10, 1994, Bucharest, Institute of Mathematics of the Romanian Academy, edited by A. Gheondea (1995), p. 49-79.

[333] V. M. Deundyak, On the index theorem for multidimensional bisingular integral operators on Hilbert modules, J. Nat. Geom. 20, 1-20 (2001).

[334] Do Ngoc Diep. Noncommutative spherical tight frames in finitely generated Hilbert C*-modules. 2004. preprint math.KT/0409541 at www.arxiv.org.

[335] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2, 151-182 (1951).

[336] J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C*-algèbres, Bull. Math. Soc. France 91, 227-283 (1963).

[337] Fang Fang Dong and Bin Meng and Huan Kun Fu, Frame representation for the unitary system on Hilbert K-modules. (Chinese), Adv. Math. (China) 37, 374-380 (2008).

[338] Zhe Dong and Zhong-Jin Ruan, Weak* exactness for dual operator spaces, J. Funct. Anal. 253, 373-379 (2007).

[339] S. Doplicher and C. Pinzari and R. Zuccante, The C*-algebra of a Hilbert Bimodule, Bollettino Unione Mat. Ital., Sez. B Artic. Ric. Mat.(8) 1, 263-282 (1998).

[340] R. G. Douglas, Hilbert modules over function algebras, in: Advances in Invariant Subspaces and other Results of Operator Theory, 9th Int. Conf. Oper. Theory, Timisoara and Herculane, Romania, 1984, Oper. Theory, Adv. Appl., vol. 17 (1986), p. 125-139.

[341] R. G. Douglas, On Silov resolution of Hilbert modules, in: Special Classes of Linear Operators and other Topics, 11. Int. Conf. Oper. Theory, Bucharest, Romania, 1986, Oper. Theory, Adv. Appl., vol. 28 (1988), p. 51-60.

[342] R. G. Douglas and V. I. Paulsen, Hilbert Modules over Function Algebras, Pitman Res. Notes Math. v.217 (Longman, New York, 1989).

[343] R. G. Douglas and V. Paulsen and Ke-Ren Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc. 20, 67-71 (1989).

[344] R. G. Douglas, Invariants for Hilbert modules, in: Operator Theory, Operator Algebras and Applications, Proc. Summer Res. Inst., Durham/NH, U.S.A., 1988, Proc. Symp. Pure Math., vol. 51, Pt. 1 (1990), p. 179-196.

[345] R. G. Douglas and Ke-Ren Yan, On the rigidity of Hardy submodules, Int. Equat. Oper. Theory 13, 350-363 (1990).

[346] R. G. Douglas and Ke-Ren Yan, A multi-variable Berger-Shaw theorem, J. Oper. Theory 27, 205-217 (1992).

[347] R. G. Douglas and Ke-Ren Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ. Math. J. 42, 811-820 (1993).

[348] R. G. Douglas and V. I. Paulsen and C. H. Sah and Ke-Ren Yan, Algebraic reduction and rigidity for Hilbert modules, Amer. J. Math. 117, 75-92 (1995).

[349] R. G. Douglas, Models and resolutions for Hilbert modules, in: Multivariable Operator Theory, Contemp. Math. 185, Joint Summer Research Conference, Univ. Washington, Seattle, Washington, July 10-18, 1993, edited by R. E. Curto and R. G. Douglas and J. D. Pincus and N. Salinas (1995), p. 109-131.

[350] R. G. Douglas and G. Misra and C. Varghese, Some geometric invariants from resolutions of Hilbert modules, in: Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl. 129, Birkhäuser, Basel (2001), p. 241-270.

[351] R. G. Douglas and G. Misra, Equivalence of quotient Hilbert modules, Proc. Indian Acad. Sci. Math. Sci. 113, 281-291 (2003).

[352] R. G. Douglas and P. W. Nowak. Hilbert C*-modules and amenable actions. 2009. preprint math.FA/0908.1173 at www.arxiv.org.

[353] S. S. Dragomir and M. Khosravi and M. S. Moslehian. Bessel type inequalities in Hilbert C*-modules. 2009. preprint math.OA/0905.4067 at www.arxiv.org / submitted to Lin. Multilin. Algebra (LAMA) / cf. http://www.staff.vu.edu.au/RGMIA/v12n1.asp.

[354] D. Drinen, Flow equivalence and graph-groupoid isomorphisms, Ph.D. thesis, Arizona State University, Arizona, U.S.A. (1999).

[355] D. Drinen and N. Sieben, C*-equivalences of graphs, J. Operator Theory 45, 209-229 (2001).

[356] D. Drinen and M. Tomforde, The C*-algebras of arbitrary graphs, Rocky Mountain J. Math. 35, 105-135 (2005).

[357] D. Dumitraşcu, A new approach to bivariant K-theory, Ph.D. thesis, Graduate School of Pennsylvania State University, USA (2001).

[358] D. Dumitraşcu. On an intermediate bivariant theory for C*-algebras, I. 2003. preprint, http://hilbert.dartmouth.edu/ dumitras/k/preprints.html.

[359] D. Dumitraşcu and J. Trout, On C*-algebras and K-theory for infinite-dimensional Fredholm manifolds, K-Theory ???, ??? / preprint math.OA/0411495 at www.arxiv.org (2006).

[360] M. J. Dupré, The classification of Hilbert bundles, Ph.D. thesis, Univ. of Pennsylvania, U.S.A. (1972).

[361] M. J. Dupré, Classifying Hilbert bundles, I, J. Functional Analysis 15, 244-278 (1974).

[362] M. J. Dupré, Classifying Hilbert bundles, II, J. Functional Analysis 22, 295-322 (1976).

[363] M. J. Dupré and P. A. Fillmore, Triviality theorems for Hilbert modules, in: Topics in Modern Operator Theory, 5th International Conference on Operator Theory, Timişoara and Herculane (Romania), June 2-12, 1980 (Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981), p. pp.71-79.

[364] M. J. Dupré and R. M. Gillette, Banach Bundles, Banach Modules and Automorphisms of C*-algebras, Research Notes in Mathematics v. 92, Adv. Publ. Program (Pitman, Boston - London - Melbourne, 1983).

[365] J. Dyer, Concerning AW*-algebras, Notices Amer. Math. Soc. 17, p. 788,, Abstract 677-47-5 (1970).

[366] K. Dykema and D. Shlyakhtenko, Exactness of Cuntz-Pimsner algebras, Proc. Edinburgh Math. Soc. 44, 425-444 (2001).

[367] K. J. Dykema and R. R. smith. The completely bounded approximation property for extended Cuntz-Pimsner algebras. 2003. preprint math.OA/0311247 at www.arxi.org.

[368] K. Dykema, Exactness of reduced amalgamated free product C*-algebras, Forum Math. 16, 161-180 (2004).

[369] S. Echterhoff, Zur Topologie auf dualen Räumen kovarianter Systeme, Ph.D. thesis, Univ. Paderborn, Paderborn, F.R.G. (1990).

[370] S. Echterhoff, On induced covariant systems, Proc. Amer. Math. Soc. 108, 703-706 (1990).

[371] S. Echterhoff, Regularization of twisted covariant systems and crossed products with continuous trace, J. Funct. Anal. 116, 277-313 (1993).

[372] S. Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization trick, J. London Math. Soc. (2) 50, 170-186 (1994).

[373] S. Echterhoff, On transformation group C*-algebras with continuous trace, Trans. Amer. Math. Soc. 343, 117-133 (1994).

[374] S. Echterhoff, Duality of induction and restriction for abelian twisted covariant systems, Math. Proc. Cambridge Philos. Soc. 119, 301-315 (1994).

[375] S. Echterhoff, Crossed products with continuous trace, Memoirs Amer. Math. Soc. 123, no. 586, 134 pp (1996).

[376] S. Echterhoff and I. Raeburn, Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, Math. Scand. 76, 289-309 (1995).

[377] S. Echterhoff and J. M. Rosenberg, Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction, Pacific J. Math. 170, 17-52 (1995).

[378] S. Echterhoff and I. Raeburn, The stabilization trick for coactions, J. Reine Angew. Math. 470, 181-215 (1996).

[379] S. Echterhoff and S. P. Kaliszewski and I. Raeburn, Crossed products by dual coactions of groups and homogeneous spaces, J. Oper. Theor. 39, 151-176 (1996).

[380] S. Echterhoff and J. Quigg, Induced coactions of discrete groups on C*-algebras, Canad. J. Math. 51, 745-770 (1999).

[381] S. Echterhoff and S. P. Kaliszewski and J. Quigg and I. Raeburn, Naturality and induced representations, Bull. Austral. Math. Soc. 61, 415-438 (2000).

[382] S. Echterhoff and I. Raeburn, Induced C*-algebras, coactions, and equivariance in the symmetric imprimitivity theorem, Math. Proc. Cambridge Philos. Soc. 128, 327-342 (2000).

[383] S. Echterhoff and R. Nest, The structure of the Brauer group and crossed products of C0(X)-linear group actions on C0(X,K), Trans. Amer. Math. Soc. 353, 3685-3712 (2001).

[384] S. Echterhoff and J. Quigg, Full duality for coactions of discrete groups, Math. Scand. 90, 267-288 (2002).

[385] S. Echterhoff and J. Quigg, Full duality of coactions of discrete groups, Math. Scand. 90, 267-288 (2002).

[386] S. Echterhoff and S. Kaliszewski and J. Quigg, Maximal coactions, Internat. J. Math. 15, 47-61 (2004).

[387] S. Echterhoff and S. Kaliszewski and J. Quigg and I. Raeburn, A categorical approach to imprimitivity theorems for C*-dynamical systems, Mem. Amer. Math. Soc. 180, no. 850, 1-169 (2006).

[388] B. Eckmann, Projective and Hilbert modules over group algebras, and finitely dominated spaces / Addendum, Comment. Math. Helv. 71 / 72, 453-462 / 329 (1997).

[389] E. G. Effros and Zhong-Jin Ruan, Representations of operator bimodules and their applications, J. Operator Theory 19, 137-157 (1988).

[390] E. G. Effros and Zhong-Jin Ruan, On non-self-adjoint operator algebras, Proc. Amer. Math. Soc. 110, 915-922 (1990).

[391] E. G. Effros and Zhong-Jin Ruan, On approximation properties of operator spaces, Internat. J. Math. 1, 163-187 (1990).

[392] E. G. Effros and Zhong-Jin Ruan, A new approach to operator spaces, Canad. Math. Bull. 34, 329-337 (1991).

[393] E. G. Effros and Zhong-Jin Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119, 579-584 (1993).

[394] E. G. Effros and Zhong-Jin Ruan, Mapping spaces and lifting for operator spaces, Proc. London Math. Soc. (3) 69, 171-197 (1994).

[395] E. G. Effros and Zhong-Jin Ruan, The Grothendieck-Pietsch and the Dvoretsky-Rogers theorem for operator spaces, J. Funct. Anal. 122, 428-450 (1995).

[396] E. G. Effros and S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, J. Funct. Anal. 144, 117-152 (1997).

[397] E. G. Effros and M. Junge and Zhong-Jin Ruan, Integral mappings and the principle of local reflexivity for norm-commutative L1-spaces, Ann. Math. (2) 151, 59-92 (2000).

[398] E. G. Effros and Zhong-Jin Ruan, On the analogues of integral mappings and local reflexivity for operator spaces, Indiana Univ. Math. J. 46, 1289-1310 (1997).

[399] E. G. Effros and Zhong-Jin Ruan, OLp spaces, in: Operator Algebras and Operator Theory (Shanghai, 1997), Contemp. Math. 228 (A.M.S., Providence, R.I., 1998), p. 51-77.

[400] E. G. Effros and Zhong-Jin Ruan, Operator Spaces in Quantized Functional Analysis and Operator Algebra Theory (Oxford University Press, Oxford, England, 2000).

[401] E. G. Effros and N. Ozawa and Zhong-Jin Ruan, On injectivity and nuclearity of operator spaces, Duke Math. J. 110, 489-521 (2001).

[402] S. Eilers and M. Tomforde. On the classification of nonsimple graph C*-algebras. 2009. preprint math.OA/0901.3579 at www.arxiv.org.

[403] G. K. Eleftherakis and V. I. Paulsen, Stably isomorphic dual operator algebras, Math. Ann. 341, 99-112 (2008).

[404] G. K. Eleftherakis, A Morita type equivalence for dual operator algebras, J. Pure Appl. Algebra 212, 1060-1071 (2008).

[405] G. A. Elliott, On derivations of AW*-algebras, Tôhoku Math. J. 30, 263-276 (1978).

[406] G. A. Elliott and K. Saitô and J. D. M. Wright, Embedding AW*-algebras as double commutants in type I algebras, J. London Math. Soc. 28, 376-384 (1983).

[407] G. A. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion free discrete abelian group, in: Operator Algebras and Group Representations, v. 1 (Pitman, London, 1984), p. 159-164.

[408] G. A. Elliott and Qing Lin, Cut-down method in the inductive limit decomposition of non-commutative tori, J. London Math. Soc. 54, 121-134 (1996).

[409] G. A. Elliott and Hanfeng Li, Morita equivalence of smooth noncommutative tori, Acta Math. 199, 1-27 (2007).

[410] G. A. Elliott, Hilbert modules over a C*-algebra of stable rank one, C. R. Math. Acad. Sci. Soc. R. Canada 29, 48-51 (2007).

[411] G. A. Elliott and Hanfeng Li, Strong Morita equivalence of higher-dimensional noncommutative tori, II, Math. Ann. 341, 825-844 (2005).

[412] G. A. Elliott and K. Kawamura, A Hilbert bundle characterization of Hilbert C*-modules, Trans. Amer. Math. Soc. 360, 4841-4862 (2008).

[413] G. A. Elliott and A. S. Toms, Regularity properties in the classification program for separable amenable C*-algebras, Bull. Amer. Math. Soc. 45, 229-245 (2008).

[414] R. L. Ellis and I. Gohberg and D. C. Lay, Infinite analogues of block Toeplitz matrices and related orthogonal functions, Integral Equations Oper. Theory 22, 375-419 (1995).

[415] R. L. Ellis and I. Gohberg, Extensions of matrix-valued inner products on modules and the inversion formula for block Toeplitz matrices, in: Operator Theory and Analysis, Amsterdam, 1997, Oper. Theory Adv. Appl. v. 122 (Birkhäuser-Verlag, Basel, 2001), p. 191-227.

[416] R. Exel, A Fredholm operator approach to Morita equivalence, K-Theory 7, 285-308 (1992).

[417] R. Exel, Twisted partial actions: a classification of regular C*-algebraic bundles, Proc. Amer. Math. Soc. 74, 417-443 (1997).

[418] R. Exel, Amenability for Fell bundles, J. Reine Angew. Math. 492, 41-73 (1997).

[419] R. Exel. A note on the representation theory of Fell bundles. 1999. preprint, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil, 1999 / preprint math.OA/9904013 at www.arxiv.org.

[420] R. Exel, Morita-Rieffel equivalence and spectral theory for integrable automorphism groups of C*-algebras, J. Funct. Anal. 172, 404-465 (2000).

[421] R. Exel, Exact groups and Fell bundles, Math. Ann. 323, 255-266 (2002).

[422] R. Exel. Interactions. 2004. preprint math.OA/0409267 at www.arxiv.org.

[423] R. Exel, Interactions, J. Funct. Anal. 244, 26-62 (2007).

[424] S. Falguières and S. Vaes. The representation category of any compact group is the bimodule category of a II1 factor. 2008. preprint math.OA/0811.1764 at www.arxiv.org.

[425] Xiao Chun Fang, The induced representation of C*-groupoid dynamic systems (Chin.), Chinese Ann. Math. Ser. B 17, 103-114 / Summary in: Chinese Ann. Math. Ser. A 17(1996), 122 (1996).

[426] Xiao Chun Fang, Induced representations of groupoids (Chin.), Acta Math. Sinica 39, 6-15 (1996).

[427] Xiao Chun Fang, The multiplier bimodule of a Hilbert bimodule (Chin.), Tongji Daxue Xuebao Ziran Kexue 26, no. 1, 1-4 (1998).

[428] Xiao Chun Fang, The realization of multiplier Hilbert bimodule on bidual space and Tietze extension theorem, Chinese Ann. Math. Ser. B 21, 375-380 (2000).

[429] Xiao Chun Fang and Jing Yu and Hong Liang Yao, Solutions to operator equations on Hilbert C*-modules, Linear Algebra appl. ???, ??? (2009).

[430] M. Farber, Abelian categories, Novikov-Shubin invariants, and Morse inequalities, C. R. Acad. Sci. Paris, Sér. I. Math. 321, 1593-1598 (1995).

[431] M. Farber, Homological algebra of Novikov-Shubin invariants, and Morse inequalities, Geom. Funct. Anal. 6, 628-665 (1996).

[432] M. Farber, Von Neumann categories and extended L2-cohomology, K-Theory 15, 347-405 (1998).

[433] M. Farber, Geometry of growth: approximation theorems for L2-invariants, Math. Ann. 311, 335-375 (1998).

[434] M. Farber, Von Neumann Betti numbers and Novikov type inequalities, Proc. Amer. Math. Soc. 128, 2819-2827 (2000).

[435] M. Farber, Novikov-Shubin signatures, Anal. Global Anal. Geom. 18, 477-515 (2000).

[436] M. Farber, Novikov-Shubin signatures II, Anal. Global Anal. Geom. 19, 259-291 (2001).

[437] D. R. Farenick and P. J. Psarrakos, A triangle inequality in Hilbert modules over matrix algebras, Linear Algebra Appl. 341, 57-67 (2002).

[438] C. Farthing, C*-algebras of higher-rank graphs: desingularization and groupoid methods, Ph.D. thesis, University of Iowa, Dept. Math., ??? (2006).

[439] C. Farthing. Removing sources from higher-rank graphs. 2006. preprint math.OA/0603037 at www.arxiv.org.

[440] J. Feldman and J. M. G. Fell, Separable representations of rings of operators, Annals Math. 65, 241-249 (1957).

[441] J. Fell, Induced Representations and Banach *-algebraic Bundles, Lecture Notes Math. v. 582 (Springer-Verlag, Berlin-Heidelberg-New York, (1977)).

[442] J. M. G. Fell and R. S. Doran, Representation of *-algebras, Locally Compact Groups, and Banach *-algebraic Bundles, I+II, Pure and Applied Mathematics, v. 125 and 126 (Academic Press, Inc., Boston, Mass., 1988).

[443] S. H. Ferguson, Polynomial bounded operators and Ext groups, Proc. Amer. Math. Soc. 124, 2779-2785 (1996).

[444] F. Fidaleo, Operator space structures and the split property, J. Operator Theory 31, 207-218 (1994).

[445] F. Fidaleo and T. Isola, The canonical endomorphism for infinite index inclusions, Z. Anal. Anwendungen 18, 47-66 (1999).

[446] O. G. Filippov, On C*-algebras A over which the Hilbert module l2(A) is self-dual (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 4, 74-76 / Moscow Univ. Math. Bull. 42(1987), no. 4, 87-90 (1987).

[447] O. G. Filippov, On the reflexivity of objects of certain concrete categories (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 1, 93-95 / Moscow Univ. Math. Bull. 45(1990), no. 1, 53-54 (1990).

[448] O. G. Filippov, The reduction of operators with almost periodic symbols to operators over C*-algebras on sections of associated bundles over a torus, Ann. Global Anal. Geom. 8, 113-126 (1990).

[449] P. A. Fillmore, A users guide to operator algebras, Canad. Math. Soc. Monographs and Advanced Texts (Wiley, New York, 1996).

[450] N. J. Fowler and M. Laca and I. Raeburn, The C*-algebras of infinite graphs, Proc. Amer. Math. Soc. 128, 2319-2327 (1999).

[451] N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48, 155-181 (1999).

[452] N. Fowler and P. S. Muhly and I. Raeburn, Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52, 569-605 (2003).

[453] N. J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math. 204, 335-375 (2002).

[454] J. Fox and P. Haskell and I. Raeburn, Kasparov products, KK-equivalence and proper actions of connected Lie groups, J. Oper. Theory 22, 3-29 (1989).

[455] M. Frank, A set of maps from K to EndA(l2(A)) isomorphic to EndA(K)(l2(A(K))). Applications., Annals Global Anal. Geom. 3, 155-171 (1985).

[456] M. Frank. Self-duality and C*-reflexivity of Hilbert C*-modules. 1986. preprint KMU-CLG, Leipzig, G.D.R.

[457] M. Frank. One-parameter groups arising from some real subspaces of self-dual Hilbert W*-modules. 1987. preprint E5-87-95, JINR Dubna, USSR.

[458] M. Frank. Von Neumann representations on self-dual Hilbert W*-modules. 1987. preprint E5-87-94, JINR Dubna, USSR.

[459] M. Frank, Beiträge zur Entwicklung und systematischen Darstellung der Theorie der Hilbert-C*-Moduln, Ph.D. thesis, Karl-Marx-Universität Leipzig, G.D.R. (1988).

[460] M. Frank, Elements of Tomita-Takesaki theory for embedable AW*-algebras, Annals Global Anal. Geom. 7, 115-131 (1989).

[461] M. Frank. Central direct integral decomposition of von Neumann algebras and some operator algebras on self-dual Hilbert W*-modules over commutative W*-algebras. 1989. preprint no. 13, KMU-CLG, Leipzig, G.D.R.

[462] M. Frank, Self-duality and C*-reflexivity of Hilbert C*-modules, Zeitschr. Anal. Anw. 9, 165-176 (1990).

[463] M. Frank, One-parameter groups arising from some real subspaces of self-dual Hilbert W*-modules, Math. Nachr. 145, 169-185 (1990).

[464] M. Frank, Von Neumann representations on self-dual Hilbert W*-modules, Math. Nachr. 145, 187-199 (1990).

[465] M. Frank. Hilbert C*-modules over monotone complete C*-algebras and a Weyl-Berg type theorem. 1991. preprint no. 3/91, NTZ, Univ. Leipzig, F.R.G. - (accepted by Math. Nachrichten, September 1994).

[466] M. Frank. Direct integrals and Hilbert W*-modules. 1991. preprint no. 23/91, NTZ, Univ. Leipzig, F.R.G.

[467] M. Frank. Spectral and polar decomposition in AW*-algebras. 1991. preprint no. 26/91, NTZ, Univ. Leipzig, F.R.G.

[468] M. Frank. Rezension zu: K. K. Jensen u. K. Thomsen: ”Elements of KK-theory”, Birkhäuser, Boston, MA -Basel - Berlin, 1991. 1992. p. 284. Zeitschr. Anal. Anwend. 11.

[469] M. Frank. Geometrical aspects of Hilbert C*-modules (Non-commutative (F)Hilbert bundles). 1992. preprint no. 15/92, NTZ, Univ. Leipzig, F.R.G.

[470] M. Frank, Spectral and polar decomposition in AW*-algebras, Zeitschr. Anal. Anw. 11, 335-341 (1992).

[471] M. Frank, Direct integrals and Hilbert W*-modules (russ.), in: Problems in Algebra, Geometry and Discrete Mathematics, eds.: O. B. Lupanov, A. I. Kostrikin, Moscow State University, Dept. Mech. Math., Moscow, Russia (1992), p. 162-177.

[472] M. Frank. Normal operator-valued weights of finite index. 1993. preprint no. 8/93, NTZ, Univ. Leipzig, F.R.G.

[473] M. Frank. Geometrical aspects of Hilbert C*-modules. 1993. Københavns Universitet, Matematisk Institut, preprint 22/1993, Copenhagen, Denmark.

[474] M. Frank and V. M. Manuilov, Diagonalizing ”compact” operators on Hilbert W*-modules, Zeitschr. Anal. Anwendungen 14, 33-41 (1995).

[475] M. Frank and E. V. Troitsky, Lefschetz numbers and geometry of operators in W*-modules (russ./engl.), Funkt. Anal. i Prilozh. 30, no. 4, 45-57 / Funct. Anal. Appl. 30(1996), 257-266 (1996).

[476] M. Frank, Hilbert C*-modules over monotone complete C*-algebras, Math. Nachr. 175, 61-83 (1995).

[477] M. Frank. On the Hahn-Banach theorem for Hilbert C*-modules. 1996. preprint 11/1996, ZHS-NTZ, Univ. Leipzig, F.R.G.

[478] M. Frank and V. M. Manuilov and E. V. Troitsky. On conditional expectations arising from group actions. 1996. preprint 44/1996, ZHS-NTZ, Univ. Leipzig, F.R.G.

[479] M. Frank. A multiplier approach to the Lance-Blecher theorem. 1997. preprint 1/1997, ZHS-NTZ, Univ. Leipzig,F.R.G. / submitted to Zeitschr. Anal. Anwendungen.

[480] M. Frank and V. M. Manuilov and E. V. Troitsky, On conditional expectations arising from group actions, Zeitschr. Anal. Anwendungen 16, 831-850 (1997).

[481] M. Frank, A multiplier approach to the Lance-Blecher theorem, Zeitschr. Anal. Anwendungen 16, 565-573 (1997).

[482] M. Frank, Beiträge zur Theorie der Hilbert-C*-Moduln, Habilitation, (ISBN 3-8265-3217-1, Shaker Verlag, Aachen, 1997) , Ph.D. thesis, Universität Leipzig, Leipzig, F.R.G. (October 1997).

[483] M. Frank, Isomorphisms of Hilbert C*-modules and *-isomorphisms of related operator C*-algebras, Math. Scand. 80, 313-319 (1997).

[484] M. Frank and V. M. Manuilov and E. V. Troitsky, Conditional expectations connected with group actions (Russ./Engl.), Vestn. Mosk. Univ., Ser. Math. Mech. no. 3, 30-34 / Moscow Univ. Math. Bull. 53(1998), no. 2, 32-36 (1998).

[485] M. Frank and E. Kirchberg, On conditional expectations of finite index, J. Operator Theory 40, 87-111 (1998).

[486] M Frank. Normal conditional expectations of finite index and sets of module generators. 1998. preprint math.OA/9809152 at www.arxiv.org.

[487] M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3, 215-243 (1999).

[488] M. Frank and D. R. Larson, A module frames concept for Hilbert C*-modules, in: Functional and Harmonic Analysis of Wavelets (San Antonio, TX, Jan. 1999), A.M.S., Providence, RI, U.S.A., Contemp. Math., vol. 247, edited by D. R. Larson and L. W. Baggett (2000), p. 207-233.

[489] M. Frank and D. R. Larson. Modular frames for Hilbert C*-modules and symmetric approximation of frames. 325-336. preprint 16/2000, ZHS-NTZ, Univ. Leipzig / preprint math.OA/0010115 at www.arxiv.org / to appear in: SPIE's 45th Annual Meeting, July 30 - August 4, 2000, San Diego, CA; Session 4119: Wavelet Applications in Signal and Image Processing VIII, org.: A. Aldroubi, A. F. Laine, M. A. Unser, Proceedings of SPIE 4119(2000).

[490] M. Frank, Hilbertian versus Hilbert W*-modules, and applications to L2- and other invariants, Acta Math. Appl. 68, 227-242 (2001).

[491] M. Frank and L. P. Klotz, A duality method in prediction theory of multivariate stationary sequences, Math. Nachr. 244, 64-77 (2002).

[492] M. Frank, Hahn-Banach type theorems for Hilbert C*-modules, Int. J. Math. 13, 675-693 (2002).

[493] M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48, 273-314 (2002).

[494] M. Frank, The commutative case: spinors, Dirac operator and de Rham algebra, in: NCG and the Standard Model of Elemenary Particle Physics, Lect. Notes Phys., vol. 596 (Springer Verlag, Berlin, 2002), p. 21-39.

[495] M. Frank, Frames for Hilbert C*-modules, in: Mini-workshop: Wavelets and Frames, Febr. 15-21, 2004, Mathematisches Forschungsinstitut Oberwolfach, org.: H. G. Feichtinger, Palle Jørgenson, David R. Larson, Gestur Olafsson, MFO Report, vol. 10 (2004), p. 496-499.

[496] M. Frank, Approximation of frames by normalized tight ones, in: Mini-workshop: Wavelets and Frames, Febr. 15-21, 2004, Mathematisches Forschungsinstitut Oberwolfach, org.: H. G. Feichtinger, Palle Jørgenson, David R. Larson, Gestur Olafsson, MFO Report, vol. 10 (2004), p. 528-532.

[497] M. Frank, Modular frames for Hilbert C*-modules, and their relations to wavelet and Gabor analysis, in: Functional Analysis VII, Proc. Postgraduate School and Conf., Inter-University Centre, Dubrovnik, Croatia, 15-22 June 2003, Various Publications Series no. 47, University of Aarhus, Aaarhus, Denmark (Dec. 2004), p. 105-109.

[498] M. Frank and V. I. Paulsen. Injective and projective Hilbert C*-modules, and C*-algebras of compact operators. 2006. preprint math.OA/0611348 at www.arxiv.org.

[499] M. Frank and K. Sharifi. Adjointability of densely defined closed operators and the Magajna-Schweizer theorem. 2007. preprint math.OA/0705.2576 at www.arxiv.org, to appear in J. Operator Theory.

[500] M. Frank and K. Sharifi. Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules. 2007. preprint, HTWK Leipzig, Germany, and Ferdowsi University, Mashhad, Iran / to appear in J. Operator Theory.

[501] M. Frank and A. A. Pavlov. Strict essential extensions of C*-algebras and Hilbert C*-modules. 2007. preprint math.OA/0710.0586 at www.arxiv.org, to appear in J. Operator Theory.

[502] M. Frank, Characterizing C*-algebras of compact operators by generic categorical properties of Hilbert C*-modules, J. of K-Theory 2, no. 3, 453-462 / doi:10.1017/is008001031jkt035 (2006).

[503] M. Frank and P. Găvruţa and M. Sal Moslehian, Superstability of adjointable mappings on Hilbert C*-modules, Applicable Analysis and Discrete Mathematics 3, 39-45 (2008).

[504] M. Frank and A. A. Pavlov, Banach-Saks properties of C*-algebras and Hilbert C*-modules, Banach J. Math. Anal. 3, 91-102 (2009).

[505] M. Frank and A. A. Pavlov. Module weak Banach-Saks and Schur properties of Hilbert C*-modules. 2009. preprint math.OA/0902.4107 at www.arxiv.org.

[506] M. Frank and V. M. Manuilov and E. V. Troitsky. A reflexivity criterion for Hilbert C*-modules over commutative C*-algebras. 2009. preprint math.OA/0908.1414 at www.arxiv.org.

[507] M. Frank and A. S. Mishchenko and A. A. Pavlov. Orthogonality-preserving, C*-conformal and conformal module mappings on Hilbert C*-modules. 2009. preprint math.OA/0907.2983 at www.arxiv.org.

[508] B. Fritzsche and B. Kirstein and A. Lasarow, On a moment problem for rational matrix-valued functions, Linear Algebra Appl. 372, 1-31 (2003).

[509] B. Fritzsche and B. Kirstein and A. Lasarow, Orthogonal rational matrix-valued functions on the unit circle, Math. Nachr. 278, 525-553 (2005).

[510] B. Fritzsche and B. Kirstein and A. Lasarow, On Hilbert modules of rational matrix-valued functions and related inverse problems, J. Comput. Appl. Math. 179, 215-248 (2005).

[511] B. Fritzsche and B. Kirstein and A. Lasarow, Orthogonal rational matrix-valued functions on the unit circle: recurrence relations and a Favard-type theorem, Math. Nachr. 279, 513-542 (2006).

[512] B. Fritzsche and B. Kirstein and A. Lasarow, The matricial Carathéodory problem in both nondegenerate and degenerate cases, in: Interpolation, Schur Functions and Moment Problems, Operator Theory:Adv. Appl., vol. 165, edited by D. Alpay and I. Gohberg (Birkhäuser, Basel, 2006), p. 251-290.

[513] B. Fritzsche and B. Kirstein and A. Lasarow, On a class of extremal solutions on the nondegenerate matricial Carathéodory problem, Analysis (Munich) 27, 109-164 (2007).

[514] A. Frydryszak and L. Jakobczyk, Generalized Gelfand-Naimark-Segal construction for supersymmetric quantum mechanics, Lett. Math. Phys. 16, no. 2, 101-107 (1988).

[515] Huan Kun Fu and Bin Meng and Fang Fang Dong, The sum of standard generalized frames in Hilbert W*-modules, J. Math. Research Expos. 29, 275-282 (2009).

[516] H. Fuge, Einige Aussagen über beschränkte Operatoren in Hilbertmoduln, Master thesis, Univ. Leipzig (1995).

[517] J. I. Fujii, Operator-valued inner product and operator inequalities, Banach J. Math. Anal. 2, 59-67 (2008).

[518] I. Fulman and P. S. Muhly, Bimodules, spectra, and Fell bundles, Israel J. Math. 108, 193-215 (1998).

[519] Mingchu Gao, Certain free products of operator spaces (Chin.), Sci. China Ser. A 49, 800-819 (2006).

[520] D. Gaşpar and P. Gaşpar, Reproducing kernel Hilbert modules over locally C* algebras, An. Univ. Vest Timiş. Ser. Mat.-Inform. 45, 245-252 (2007).

[521] V. Gayral and J.-H. Jureit and T. Krajewski and R. Wulkenhaar. Quantum field theory on projective modules. 2006. preprint hep-th/0612048 at www.arxiv.org / preprint CPT-P67-2006.

[522] M. I. Gekhtman, Hilbert modules and pseudo-Hilbert spaces, (russian), in: Spectral Theory of Operators and Infinite Analysis, Collect. sci. works (Kiew, USSR, 1984), p. 57-65.

[523] U. Gerecke and J. Lorenz, Grundlegende Aussagen über nichtnegativ hermitesche Maße, Maße mit orthogonalen Werten sowie projektorwertige Maße, Master thesis, Universität Leipzig, Leipzig, F.R.G. (1995). 367 pp.

[524] E. Germain, KK-theory of reduced free-product C*-algebras, Duke Math. J. 82, 707-723 (1996).

[525] E. Germain, Amalgamated free product C*-algebras and KK-theory, Fields Inst. Commun. 12, 89-101 (1997).

[526] E. Germain. A note on Toeplitz-Pimsner algebras and the topological entropy of some automorphisms. 2000. preprint, Institut de Mathé matiques de Jussieu, Paris, France.

[527] E. Germain. Approximation properties for Pimsner C*-algebras. 2005. Prépublication Institut de Mathématique de Jussieu, no. 329.

[528] L. Gewalter, Der Perioditätssatz für AW*-Algebren, Ph.D. thesis, Universität Marburg/Lahn, F.R.G. (1982).

[529] P. Ghez and R. Lima and J. E. Roberts, W*-categories, Pacific J. Math. 120, 79-109 (1985).

[530] G. R. Giellis, Trace-class for a Hilbert module, Proc. Amer. Math. Soc. 29, 63-68 (1971).

[531] G. R. Giellis, A characterization of Hilbert modules, Proc. Amer. Math. Soc. 36, 440-442 (1972).

[532] T. Giordano, A classification of approximately finite real C*-algebras, J. Reine Angew. Math. 385, 161-194 (1988).

[533] T. Giordano and D. E. Handelman, Real AF C*-algebras with K0 of small rank, Can. J. Math. 41, 786-807 (1989).

[534] R. Gohm and M. Skeide, Constructing extensions of CP-maps via tensor dilations with the help of von Neumann modules, Infinit. Dimens. Anal. Quantum Probab. Relat. Top. 8, 291-305 (2005).

[535] M. Goldman, Structure of AW*-algebras of type I, Duke Math. J. 23, 23-34 (1956).

[536] H. H. Goldstine and L. P. Horwitz, Hilbert space with non-associative scalars, Math. Ann. 164, 291-316 (1966).

[537] Donggeng Gong, K-theoretic torsion invariants for finite von Neumann algebras, Houston J. Math. 22, 141-159 (1996).

[538] Debashish Goswami and Kalyan B. Sinha, Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra, Comm. Math. Phys. 205, 377-403 (1999).

[539] Debashish Goswami, On equivariant embedding of Hilbert C*-modules, Proc. Indian Acad. Sci. (Math. Sci.) 119, 63-70 (2009).

[540] J. M. Gracia-Bondía and J. C. Várilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Adv. Texts: Basler Lehrbücher (Birkhäuser, Boston, Ma., 2001), p. ISBN 0-8176-4124-6.

[541] P. Green, The local structure of twisted covariance algebras, Acta Math. 140, no. 3-4, 191-250 (1978).

[542] P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36, 88-104 (1980).

[543] W. A. Greene, Ambrose modules, Mem. Amer. Math. Soc. 148, 109-134 (1974).

[544] K. Gröchenig and F. Luef. The topological stable rank of projective modules over noncommutative tori. 2008. preprint, Universität Wien, Austria.

[545] M. J. Gruber, Nichtkommutative Blochtheorie (German), Ph.D. thesis, Humboldt-Univ. zu Berlin, Berlin, Germany (1998). at mathematik.hu-berlin.de.

[546] M. J. Gruber, Bloch theory and quantization of magnetic systems, J. Geom. Phys. 34.2, 137-154 (2000).

[547] M. J. Gruber, Non-commutative Bloch theory. An overview, J. Math. Phys., 2438-2465 (2001).

[548] B. Guljaš. Pullback and pushout constructions for Hilbert C*-modules. 2000. preprint, University of Zagreb, Zagreb, Croatia / 2nd Croatian Math. Congr., June 15-17, 2000, Zagreb.

[549] B. Guljaš, Unbounded operators on Hilbert C*-modules over C*-algebras of compact operators, J. Operator Theory 59, 179-192 (2008).

[550] Kunyo Guo, Normal Hilbert modules over the ball A(B), Studia Math. 135, 1-12 (1999).

[551] Maozheng Guo and Xiaoxia Zhang, Takesaki-Takai duality theorem in Hilbert C*-modules, Acta Math. Sinica (Engl. Ser.) 20, 1079-1088 (2004).

[552] Maozheng Guo and Bin Meng and Xiaohong Cao, Operator-valued free entropy and modular frames, Methods Appl. Anal. 11, issue 3 (2004).

[553] U. Haagerup, The injective factors of type IIIλ, 0 < λ < 1, Pacific J. Math. 137, 265-310 (1989).

[554] H. Halpern, The maximal GCR-ideal in an AW*-algebra, Proc. Amer. Math. Soc. 17, 906-914 (1966).

[555] H. Halpern. One parameter automorphism groups of generalized KH-algebras. 1985. preprint, Univ. of Cincinnati, Cincinnati, USA.

[556] M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. Kyoto 15, 773-785 (1979).

[557] M. Hamana, Injective envelopes of C*-algebras, J. Math. Soc. Japan 31, 181-197 (1979).

[558] M. Hamana, Regular embeddings of C*-algebras in monotone complete C*-algebras, J. Math. Soc. Japan 33, 159-183 (1981).

[559] M. Hamana and O. Takateru and K. Saitô, Extensions of derivations and automorphisms from C*-algebras to their injective envelopes, Tôhoku Math. J. 34, 277-287 (1982).

[560] M. Hamana, The centre of the regular monotone completion of a C*-algebra, J. London Math. Soc. 26, 522-530 (1982).

[561] M. Hamana, Tensor products for monotone complete C*-algebras, Japan. J. Math. 8, 259-283 (1982).

[562] M. Hamana, Tensor products for monotone complete C*-algebras, II, Japan. J. Math. 8, 285-295 (1982).

[563] M. Hamana and T. Okayasu and K. Saitô, Extensions of derivations and automorphisms from C*-algebras to their injective envelopes, Tôhoku Math. J. 34, 277-287 (1982).

[564] M. Hamana, On AW*-subalgebras of type I AW*-algebras, Math. Scand. 52, 81-88 (1983).

[565] M. Hamana, Injective envelopes of C*-dynamical systems, Tôhoku Math. J. 37, 463-487 (1985).

[566] M. Hamana, Monotone closures of commutative C*-algebras, Proc. Amer. Math. Soc. 105, 683-685 (1989).

[567] M. Hamana, Dynamical systems based on monotone complete C*-algebras, in: Current Topics in Operator Algebras, Proc. of the Satellite Conference of ICM-90, Nara-ken New Public Hall, Japan, 16.-18.8.90, edited by H. Araki and H. Choda and Y. Nakagami and K. Saitô (World Scientific, Singapore, 1991).

[568] M. Hamana, Dynamical systems based on monotone complete C*-algebras, in: Current Topics in Operator Algebras (Nara, 1990), p. 282-296, World Sci. Publishing, River Edge, NJ (1991).

[569] M. Hamana, Modules over monotone complete C*-algebras, Internat. J. Math. 3, 185-204 (1992).

[570] M. Hamana, Injective envelopes of dynamical systems, in: Operator Algebras and Operator Theory (Craiova, 1989), p. 69-77, Pitman Res. notes Math. Ser., 271, Longman Sci. Tech. Harlow (1992).

[571] M. Hamana, Infinite, σ-finite, non-W*, AW*-factors, Int. J. Math. 12, 81-96 (2001).

[572] Deguang Han and Wu Jing and David R. Larson and Ram N. Mohapatra, Riesz bases and their modular frames in Hilbert C*-modules, J. Math. Anal. Appl. 343, 246-256 (2008).

[573] Deguang Han and Wu Jing and Ram N. Mohapatra. Perturbations of frames and Riesz bases in Hilbert C*-modules. 2009. preprint, Oct. 2008, submitted to Lin. Algebra Appl.

[574] D. Handelman, Stable range in AW*-algebras, Proc. Amer. Math. Soc. 76, 241-249 (1979).

[575] D. Handelman, Finite Rickart C*-algebras and their properties, in: Adv. in Math., Suppl., Studies in Analysis no. 4 (Academic Press, Orlando, FL, 1979), p. 171-196.

[576] D. Handelman, Homomorphisms of C*-algebras to finite AW*-algebras, Michigan J. Math. 28, 229-240 (1981).

[577] D. Handelman, Rickart C*-algebras, II, Adv. Math. 48, 1-15 (1983).

[578] B. Hanke and D. Kotschick and J. Roe and T. Schick. Coarse topology, enlargeability, and essentialness. 2008. preprint, www.mathematik.uni-muenchen.de.

[579] H. Harnisch and E. Kirchberg. The inverse problem for primitive ideal spaces. 2005. preprint no. 399, SFB 478 - Geometrische Strukturen in der Mathematik, Math. Inst., Westfälische Wilhelms-Universität Münster, Germany.

[580] M. Hassani and A. Niknam, On C0-groups of linear operators, J. Sci. Islam. Repub. Iran 15, 159-161 (2004).

[581] J.-F. Havet. Calcul fonctonnel continu dans les modules hilbertiens autoduaux. preprint 1988, Orléans, France.

[582] J.-F. Havet, Espérance conditionelle minimale, J. Oper. Theory 24, 33-55 (1990).

[583] G. C. Hegerfeldt, Inequalities of Schwarz and Hölder type for random operators, J. Math. Phys. 26, 1576-1577 (1985).

[584] A. Ya. Helemskii, The structure of a C*-algebra and its stock of projective Hilbert modules (Russ.), Uspekhi Mat. Nauk 52, no. 4, 221-222 (1997).

[585] J. Hellmich, Quantenstochastische Integration in Hilbertmoduln, Ph.D. thesis, Universität Tübingen, Tübingen, Germany (2001).

[586] M. A. Hennings, Kasparov's technical lemma for b*-algebras, Math. Proc. Cambridge Philos. Soc. 105, 537-545 (1989).

[587] Jaeseong Heo, Completely multi-positive linear maps and representations on Hilbert C*-modules, J. Oper. Theory 41, 3-22 (1999).

[588] Jaeseong Heo, Hilbert C*-module representations on Haagerup tensor products and group systems, Publ. Res. Inst. Math. Sci. 35, 757-768 (1999).

[589] Jaeseong Heo, Representations of invariant multilinear maps on Hilbert C*-modules, Israel J. Math. 118, 125-146 (2000).

[590] Jaeseong Heo, Hilbert C*-modules and projective representations associated with multipliers, J. Math. Anal. Appl. 331, 499-505 (2007).

[591] Jaeseong Heo. Stationary stochastic processes in a group system. J. Math. Phys. 48. 2007. no. 10, 103502, 8 pp.

[592] N. Higson, Algebraic K-theory of stable C*-algebras, Adv. Math. 67:no. 1, 140pp (1988).

[593] N. Higson, A primer on KK-theory, Proc. Symp. Pure Math. 51-1, 239-285 (1990).

[594] N. Higson and E. K. Pedersen and J. Roe, C*-algebras and controlled topology, K-Theory 11, 209-239 (1997).

[595] M. Hilsum and G. Skandalis, Stabilité des C*-algébres de feuilletages, Ann. Inst. Fourier, Grenoble 33, 201-208 (1983).

[596] M. Hilsum, Signature operator on Lipschitz manifolds and unbounded Kasparov bimodules, in: Lecture Notes Math. v. 1132, Operator Algebras and their Connections with Topology and Ergodic Theory, edited by H. Araki and C. C. Moore and Ş. Stratila and D. Voiculescu (Springer-Verlag, Berlin, 1985), p. pp. 254-288.

[597] M. Hilsum, Fonctorialité en K-théorie bivariante pour les variétés lipschitziennes, K-theory 3, 401-440 (1989).

[598] M. Hilsum and G. Skandalis, Invariance par homotopie de la signature a coefficients dans un fibre presque plat, J. Reine Angew. Math. 423, 73-99 (1992).

[599] M. Hilsum. Index classes of Hilbert modules with boundary. 2001. preprint UMR no. 281, Paris, France.

[600] M. Hilsum, Hilbert modules of foliated manifolds with boundary, in: Foliations: Geometry and Dynamics (Warsaw, 2000) (World Sci. Publishing, River Edge, NJ, 2002), p. 315-332.

[601] I. Hirshberg, C*-algebras and endomorphisms associated to systems of Hilbert modules, Ph.D. thesis, Univ. of California, Berkeley, Ca., USA (2003).

[602] I. Hirshberg and J. Zacharias, On the structure of spectral algebras and their generalizations, Contemp. Math. 335, 149-162 (2003).

[603] I. Hirshberg, C*-algebras of Hilbert module product systems, J. Reine Angew. Math. 570, 131-142 (2004).

[604] I. Hirshberg, On the universal property of Pimsner-Toeplitz C*-algebras and their continuous analogues, J. Funct. Anal. 219, 21-33 (2005).

[605] I. Hirshberg, Essential representations of C*-correspondences, Internat. J. Math. 16, 765-775 (2005).

[606] R. Hoffmann. Die C*-Algebra eines ungerichteten Graphen. 2001. Wissenschaftliche Arbeit zur Prüfung für das Lehramt (M. Wolff), Eberhard-Karls-Universität Tübingen, Math. Fakultät, Tübingen, Germany.

[607] K. H. Hofmann, Representations of algebras by continuous sections, Bull. Amer. Math. Soc. 78, 291-373 (1972).

[608] K. H. Hofmann, Erratum : Representations of algebras by continuous sections, Mem. Amer. Math. Soc. 148, 177-182 (1974).

[609] T. Hoover and A. Lambert, Conditional independence and tensor products of certain Hilbert L-modules, J. Korean Math. Soc. 38, 125-136 (2001).

[610] H. Hoseiny and A. Niknam. Decomposition of modular frames on Hilbert C*-modules. 2004. preprint, Azad University of Mashhad and Ferdowsi University, Mashhad, Iran, submitted to Indian J. Pure Applied Math.

[611] H. Hoseiny and A. Niknam. Operators and frames. 2004. preprint, Azad University of Mashhad and Ferdowsi University, Mashhad, Iran.

[612] H. Hoseiny and A. Niknam, Frames representation and decomposition in finitely or countably generated Hilbert C*-modules, Journal of Institute of Mathematics & Computer Sciences 17, no. 2, 143-147 (2004).

[613] H. Hosseini and A. Niknam, Modular frames in countably and finitely generated Hilbert C*-modules, Adv. Stud. Contemp. Math. (Kyungshang) 10, 205-212 (2005).

[614] A. an Huef and I. Raeburn and D. P. Williams, An equivariant Brauer semigroup and the symmetric imprimitivity theorem, Trans. Amer. Math. Soc. 352, 4759-4787 (2000).

[615] A. an Huef and I. Raeburn, Regularity of induced representations and a theorem of Quigg and Spielberg, Math. Proc. Cambridge Philos. Soc. 133, 249-259 (2002).

[616] A. an Huef and I. Raeburn and D. P. Williams. A symmetric imprimitivity theorem for commuting proper actions. 2002. preprint math.OA/0202046 at www.arxiv.org.

[617] A. an Huef and I. Raeburn and D. P. Williams, Proper actions on imprimitivity bimodules and decompositions of Morita equivalences, J. Funct. Anal. 200, 401-428 (2003).

[618] A. an Huef and I. Raeburn, Mansfield's imprimitivity theorem for arbitrary closed subgroups, Proc. Amer. Math. Soc. 132, 1153-1162 (2004).

[619] A. an Huef and S. Kaliszewski and I. Raeburn and D. P. Williams. Extension problems for representations of crossed-product C*-algebras. 2005/2006. preprint math.OA/0502151 at www.arxiv.org / to appear in J. Operator Theory.

[620] A. an Huef and S. Kaliszewski and I. Raeburn. Covariant representations of Hecke algebras and imprimitivity for crossed products by homogeneous spaces. 2005. preprint math.OA/0509291 at www.arxiv.org.

[621] A. an Huef and S. Kaliszewski and I. Raeburn and D. P. Williams. Induction in stages for C*-crossed products by maximal coactions. 2006. preprint math.OA/0602222 at www.arxiv.org.

[622] A. an Huef and S. Kaliszewski and I. Raeburn. Extending representations of subgroups and the duality of induction and restriction. 2006. preprint.

[623] A. an Huef and S. Kaliszewski and I. Raeburn, Properties preserved under Morita equivalence of C*-algebras, Proc. Amer. Math. Soc. 135, 1495-1503 (2007).

[624] A. an Huef and I. Raeburn and D. P. Williams, Properties preserved under Morita equivalence of C*-algebras, Proc. Amer. Math. Soc. 135, 1495-1503 (2007).

[625] A. an Huef and S. Kaliszewski and I. Raeburn and D. P. Williams. Naturality of Rieffel's Morita equivalence for proper actions. 2008. preprint math.OA/0810.2819 at www.arxiv.org.

[626] A. an Huef and I. Raeburn and D. P. Williams. Functoriality of Rieffel's generalized fixed-point algebras for proper actions. 2009. preprint math.OA/0909.2860 at www.arxiv.org.

[627] D. Ilišević, Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171, 103-123 (2005).

[628] D. Ilišević and S. Varošanec, Grüss type inequalities in inner product modules, Proc. Amer. Math. Soc. 133, 3271-3280 (2005).

[629] D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on C*-modules, J. Math. Anal. Appl. 341, 298-308 (2008).

[630] D. Ilišević and S. Varošanec, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C*-modules, Banach J. Math. Anal. 1, 78-84 (2007).

[631] M. Ionescu, Operator algebras and Mauldin-Williams Graphs, Proc. Amer. Math. Soc. 134, 1087-1097 (2006).

[632] A. A. Irmatov, On a topology in the space of Fredholm operators (russ.), in: Selected Questions of Algebra, Geometry and Discrete Mathematics, Moscow, Russia, 40-43 (1988).

[633] A. A. Irmatov, On a new topology in the space of Fredholm operators, Ann. Global Anal. Geom. 7, 93-106 (1989).

[634] A. A. Irmatov, The topology of the space of Fredholm operators and invariants of non-linear Fredholm maps (russ.), Uspekhi Mat. Nauk 45:1, 173-174 (1990).

[635] A. A. Irmatov and A. S. Mishchenko, Infinitesimal Fredholm structures on infinite-dimensional manifolds, in: Operator Algebras and Topology, Proc. of the OATE 2 Conf., Romania 1989, Pitman Research Notes in Mathematics Series v. 270, edited by W. B. Arveson and A. S. Mishchenko and M. Putinar and M. A. Rieffel and Ş. Strătilă (Longman Scientific & Technical, New York, 1990), p. 45-81.

[636] A. A. Irmatov and A. S. Mishchenko, On compact and Fredholm operators over C*-algebras and a new topology in the space of compact operators, J. K-Theory 2, no. 2, Special issue in memory of Yurii Petrovich Solovyev. Part 1, 329-351 (2008).

[637] J. M. Isidro. Hilbert C*-modules are JB*-triples. 2001. preprint math.CV/0112218 at www.arxiv.org.

[638] J. M. Isidro, Holomorphic automorphisms of the unit ball of Hilbert C*-modules, Glasgow Math. J. 45, 249-262 (2003).

[639] V. I. Istrǎţescu, Inner Product Structures, Theory and Applications, Mathematics and Its Applications v.25 (D. Reidel Publishing Company, Dordrecht - Boston - Lancaster - Tokyo, 1987).

[640] A. I. Istrǎţescu and V. I. Istrǎţescu. Rudiments of an operator theory on inner product modules, I, II. 1995. preprint.

[641] S. Itoh, A note on dilations in modules over C*-algebras, J. London Math. Soc. 22, 117-126 (1980).

[642] S. Itoh, Reproducing kernels in modules over C*-algebras and their applications, Bull. Kyushu Inst. Technol. Math. Natur. Sci. 37, 1-20 (1990).

[643] M. Izumi, Inclusions of simple C*-algebras, J. Reine Angew. Math. 547, 97-138 (2002).

[644] P. K. Jakobson and V. V. Lychagin, Operator-valued probability theory, Lobachevskii J. Math. 16, 17-56 (2004).

[645] Hai-Gon Je and Young-Oh Yang, On the spatial numerical ranges and Hermitian operators, Univ. Ulsan Rep. Natur. Sci. Eng. 17, no. 2, 209-214 (1986).

[646] K. K. Jensen and K. Thomsen, Elements of KK-theory, Mathematics: Theory and Applications (Birkhäuser, Boston, Mass., 1991).

[647] Ja A Jeong, Full hereditary C*-subalgebras of crossed products, Bull. Korean Math. Soc. 30, 193-199 (1993).

[648] J. A. Jeong and G. H. Park and D. Y. Shin, Stable rank and real rank of graph algebras, Pacific J. Math. 200, 331-343 (2001).

[649] G. Ji, Generalized Cowen-Douglas operators over Hilbert C*-modules, Integr. Equat. Oper. Th. 20, 395-409 (1994).

[650] Wu Jing, Frames in Hilbert C*-Modules, Ph.D. thesis, University of Central Florida, U.S.A., http://gradworks.umi.com/32/33/3233657.html (2006).

[651] Wu Jing and Deguang Han and Ram Mohapatra, Structured Parseval frames in Hilbert C*-modules, Contemp. Math. 414, 275-287 (2006).

[652] M. Joiţa, On Hilbert modules over locally C*-algebras, An. Univ. Bucureşti Mat. 49, 41-52 (2000).

[653] M. Joiţa, Hilbert modules over locally C*-algebras: theorem of Stinespring, Math. Rep. (Bucur.) 3(53), 21-27 (2001).

[654] M. Joiţa, Strict completely positive maps between locally C*-algebras and representation Hilbert modules, Proc. London Math. Soc. II. Ser. 66, 421-432 (2001).

[655] M. Joiţa, On the bounded part of a Hilbert module over a locally C*-algebra, Period. Math. Hungar. 45, no. 1-2, 81-85 (2002).

[656] M. Joiţa, Projections on Hilbert modules over locally C*-algebras, Math. Reports 4(54), 373-378 (2002).

[657] M. Joiţa, Tensor products of Hilbert modules over locally C*-algebras, Czechoslovak Math. J. 54(129), 727-737 (2004).

[658] M. Joiţa, The stabilization theorem for Hilbert modules over locally C*-algebras, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. 408, 118-127 (2004).

[659] M. Joiţa, Morita equivalence for locally C*-algebras, Bull. London Math. Soc. 36, 802-810 (2004).

[660] M. Joiţa, On bounded module maps between Hilbert modules over locally C*-algebras, Acta Math. Univ. Comenian. (N.S.) 74, 71-78 (2005).

[661] M. Joiţa, On Hilbert modules over locally C*-algebras, II, Period. Math. Hungar. 51, 27-36 (2005).

[662] M. Joiţa, Induced representations of locally C*-algebras, Rocky Mountain J. Math. 35, 1923-1933 (2005).

[663] M. Joiţa. Crossed products of locally C*-algebras. 2005. preprint math.OA/0512128 at www.arxiv.org, to apper in Rocky Mountains J. Math.

[664] M. Joiţa, Completely multi-positive linear maps between locally C*-algebras and representations on Hilbert modules, Studia Math. 172, 181-196 (2006).

[665] M. Joiţa. Covariant completely positive linear maps between locally C*-algebras. 2006. preprint math.OA/0609149 at www.arxiv.org.

[666] M. Joiţa, Hilbert Modules over Locally C*-Algebras (University of Bucharest Press, 2006), p. ISBN 973737128-3.

[667] M. Joiţa, On the linking algebra of Hilbert modules and Morita equivalence of locally C*-algebras, Surv. Math. Appl. 1, 23-32 (2006).

[668] M. Joiţa, A note about full Hilbert modules over Fréchet locally C*-algebras, Novi Sad J. Math. 37, 27-32 (2007).

[669] M. Joiţa. Crossed products of locally C*-algebras and Morita equivalence. 2007. preprint math.OA/0705.3810 at www.arxiv.org.

[670] M. Joiţa. On Morita eqivalence of group actions on locally C*-algebras. 2007. preprint math.OA/0705.3819 at www.arxiv.org.

[671] M. Joiţa and T.-L. Costache and M. Zamfir, Dilations on Hilbert C*-modules for C*-dynamical systems, in: BSG Proceedings 14 (The Mathematics Sections: Geometry, Dynamical Systems, Optimization and Mathematical Statistics), Proceedings of the 4th International Colloquium of Mathematics in Engineering and Numerical Physics (MENP-4), October 6-8, 2006, Bucharest, Romania (Geometry Balkan Press, 2007), p. 81-86.

[672] M. Joiţa, On multiplier modules of Hilbert modules over locally C*-algebras, Studia Math. 185, 263-277 (2008).

[673] M. Joiţa. Stable outer conjugacy and strong Morita equivalence of group actions on pro-C*-algebras. 2008. preprint, University of Bucharest, Romania / to appear in Central European Journal Math.

[674] M. Joiţa. A note on Morita equivalence of group actions on pro-C*-algebras. 2008. preprint, University of Bucharest, Romania / to appear in Rocky Mountains J. Math.

[675] M. Joiţa. Crossed products of locally C*-algebras and strong Morita equivalence. 2008. preprint, University of Bucharest, Romania / to appear in Mediterr. J. Math.

[676] M. Joiţa, Countably generated Hilbert modules and stable isomorphisms of locally C*-algebras, in: Hot Topics in Operator Theory, Proc. 21st Int. Conf. on Operator Theory, Timişoara, June 29 - July 4, 2006, Theta Ser. Adv. Math., vol. 9, edited by R. G. Douglas and J. Esterle and D. Gaspar and D. Timotin and F.-H. Vasilescu (Theta Bucharest, 2008), p. 89-99.

[677] M. Joiţa. A note on full countably generated Hilbert modules. 2008. preprint, University of Bucharest, Romania.

[678] M. Joiţa, On frames in Hilbert modules over pro-C*-algebras, Topology Appl. 156, Special Issue (Proceedings of the III Workshop on Coverings, Selections and Games in Topology, Vrnjacka Banja, Serbia, April 25-29, 2007), 83-92 (2008).

[679] M. Joiţa, Countably generated Hilbert modules, multiplier modules, and stable isomorphisms of locally C*-algebras, Theta Ser. Adv. Math. 9, 89-99 (2008).

[680] M. Joiţa. Frames of multipliers in tensor products of Hilbert modules over pro-C*-algebras. 2009. preprint / submitted to J. Math. Anal. Appl.

[681] P. Jolissaint, Indice d'espérances conditionelles et algèbres de von Neumann finies, Math. Scand. 68, 221-246 (1991).

[682] M. Junge and G. Pisier, Bilinear forms on exact operator spaces and B(H) ⊗ B(H), Geom. Funct. Anal. 5, 329-363 (1995).

[683] M. Junge. Factorization theory for spaces of operators. 1996. Habilitationsschrift, Univ. Kiel, Fed. Rep. Germany.

[684] M. Junge and Ch. Le Merdi, Factorization through matrix spaces for finite rank operators between C*-algebras, Duke Math. J. 100, 299-319 (1999).

[685] M. Junge and D. Sherman, Noncommutative Lp modules, J. Operator Theory 53, 3-34 (2005).

[686] Yu. I. Jurayev and F. Saripov. On the algebra of operators of Hilbert modules over locally C*-algebras. 2000. preprint, Samarkand State University, Uzbekistan / The 1st Turkish Int. Conf. on Topol. and its Appl., August 2-5, 2000, Istanbul, Turkey.

[687] R. V. Kadison and G. K. Pedersen, Equivalence in operator algebras, Math. Scand. 27, 205-222 (1970).

[688] R. V. Kadison, The von Neumann characterization theorems, Expos. Math. 3, 193-227 (1985).

[689] V. Kaftal, Type decomposition for von Neumann algebra embeddings, J. Funct. Anal. 98, 169-193 (1991).

[690] V. Kaftal and D. R. Larson. Operator-valued frames and applications to group representations. 2004. preprint, Texas A&M Univ., College Station, TX, USA; work in progress.

[691] V. Kaftal and D. R. Larson and Shuang Zhang, Operator-valued frames on C*-modules, Contemp. Math. 451, 363-405 (2008).

[692] V. Kaftal and D. R. Larson and Shuang Zhang, Operator-valued frames, Trans. Amer. Math. Soc. ???, ??? (2009).

[693] T. Kajiwara, Remarks on strongly Morita equivalent C*-crossed products, Math. Japon. 32, 257-260 (1987).

[694] T. Kajiwara and Y. Watatani. Simplicity of the algebras Ox of the bimodules associated with the inclusions of simple C*-algebras with finite index. 1996. preprint, Okayama Univ., Dept. Environm. Math. Sci., Japan.

[695] T. Kajiwara and Y. Watatani, Crossed products of Hilbert C*-bimodules by countable discrete groups, Proc. Amer. Math. Soc. 126, 841-851 (1998).

[696] T. Kajiwara and Y. Watatani, Crossed products of Hilbert C*-bimodules by bundles, J. Austral. Math. Soc. 64, 119-135 (1998).

[697] T. Kajiwara and C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules, J. Funct. Anal. 159, 295-322 (1998).

[698] T. Kajiwara and C. Pinzari and Y. Watatani, Hilbert C*-bimodules and countably generated Cuntz-Krieger algebras, J. Funct. Anal. 159, 4143-4147 (1998).

[699] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352, 3429-3472 (2000).

[700] T. Kajiwara, Continuous crossed product of Hilbert C*-bimodules, Internat. J. Math. 11, 969-981 (2000).

[701] T. Kajiwara and C. Pinzari and Y. Watatani, Hilbert C*-bimodules and countably generated Cuntz-Krieger algebras, J. Operator Theory 45, 3-18 (2001).

[702] T. Kajiwara and Y. Watatani, Hilbert C*-modules and continuous Cuntz-Krieger algebras, J. Math. Soc. Japan 54, 35-59 (2002).

[703] T. Kajiwara and C. Pinzari and Y. Watatani, Jones index theory for Hilbert C*-bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215, 1-49 (2004).

[704] T. Kajiwara and Y. Watatani. C*-algebras associated with self-similar sets. 2003. preprint math.OA/0312481 at www.arxiv.org.

[705] Y. Kakihara and T. Teresaki, Hilbert B(H)-modules with applications, I, Res. Rep. Inst. Inf. Sci. Tech. 5, 23-32 (1979).

[706] Y. Kakihara, Hilbert B(H)-modules with applications, II, Res. Rep. Inst. Inform. Sci. Tech. 6, 33-45 (1980).

[707] Y. Kakihara, Hilbert B(H)-modules with applications, III, Res. Activ. Fac. Sci. and Eng., Tokyo Denki Univ. 4, 11-32 (1982).

[708] Y. Kakihara, Hilbert B(H)-modules with applications, IV, Res. Activ. Fac. Sci. and Eng., Tokyo Denki Univ. 5, 27-30 (1983).

[709] Y. Kakihara, On a Hilbert module over an operator algebra and its application to harmonic analysis, Kodai Math. J. 6, 289-300 (1983).

[710] Y. Kakihara, Hilbert B(H)-modules with applications, V, Res. Activ. Fac. Sci. and Eng., Tokyo Denki Univ. 6, 131-132 (1984).

[711] Y. Kakihara, A note on harmonizable and V-bounded processes, J. Multivar. Anal. 16, 140-156 (1985).

[712] Y. Kakihara, Multidimensional Second Order Stochastic Processes, Series on Multivariate Analysis, v. 2 (World Scientific Publ. Co., Inc., River Edge, NJ, 1997).

[713] S. P. Kaliszewski, Morita equivalence methods for twisted C*-dynamical systems, Ph.D. thesis, Dartmouth College, New Hampshire, U.S.A., June (1994).

[714] S. P. Kaliszewski, A note on Morita equivalence of twisted C*-dynamical systems, Proc. Amer. Math. Soc. 123, 1737-1740 (1995).

[715] S. P. Kaliszewski, Induced representations of twisted C*-dynamical systems, J. Oper. Theory 37, 67-89 (1997).

[716] S. P. Kaliszewski and J. Quigg and I. Raeburn, Duality of restriction and induction for C*-coactions, Trans. Amer. Math. Soc. 349, 2085-2113 (1997).

[717] S. P. Kaliszewski and J. Quigg, Imprimitivity for C*-coactions of non-amenable groups, Math. Proc. Camb. Phil. Soc. 123, 101-118 (1998).

[718] S. P. Kaliszewski and J. Quigg and I. Raeburn, Skew products and crossed products by coactions, J. Operator Theory 46, 411-433 (2001).

[719] S. Kaliszewski and J. Quigg, Three bimodules for Mansfield's imprimitivity theorem, J. Austr. Math. Soc. 71, 397-419 (2002).

[720] S. P. Kaliszewski and M. Landstad and J. Quigg. Hecke C*-algebras, Schlichting completions, and Morita equivalence. 2003/2006. preprint math.OA/0311222 at www.arxiv.org.

[721] S. Kaliszewski and J. Quigg, Manfield's imprimitivity theorem for full crossed products, Trans. Amer. Math. Soc. 357, 2021-2042 (2005).

[722] S. Kaliszewski and J. Quigg, Landstad's characterization for full crossed products, New York J. Math. 13, 1-10 (2007).

[723] S. Kaliszewski and J. Quigg and I. Raebuern, Proper actions, fixed-point algebras and naturality in nonabelian duality, J. Funct. Anal. 254, 2949-2968 (2008).

[724] S. Kaliszewski and P. S. Muhly and J. Quigg and D. P. Williams. Coactions and Fell bundles. 2009. preprint math.OA/0909.3259 at www.arxiv.org.

[725] J. Kaminker and J. G. Miller, Homotopy invariance of the analytic index of signature operators over C*-algebras, J. Oper. Theory 14, 113-127 (1985).

[726] T. K. Kandelaki, Category of homomorphisms into a generalized Calkin algebra and projective modules over the commutant (russ.), Soobshch. Akad. Nauk Gruzin. SSR 122, 253-255 (1986).

[727] T. K. Kandelaki, Multiplier and Hilbert C*-categories, Proc. A. Razmadze Math. Inst. 127, 89-111 (2001).

[728] Masayoshi Kaneda, Multipliers and Algebraizations of Operator Spaces, Ph.D. thesis, University of Houston, Houston, TX, U.S.A. (2003).

[729] I. Kaplansky, Projections in Banach algebras, Ann. Math. 53, 235-249 (1951).

[730] I. Kaplansky, Algebras of type I, Annals Math. 56, 460-472 (1952).

[731] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75, 839-858 (1953).

[732] M. I. Karakhanyan, Subnormal elements in C*-algebras, Erevan. Gos. Univ. Uchen. Zap., Estestv. Nauki no. 1, 34-40 (1992).

[733] D. Kaschek and N. Neumaier and S. Waldmann. Complete positivity of Rieffel's deformation quantization. 2008. preprint math-ph/0809.2206 at www.arxiv.org.

[734] U. Kashyap, A Morita theorem for dual operator algebras, J. Funct. Anal. 256, 3545-3567 (2009).

[735] V. A. Kasimov, Hilbert structures on modules over C*-algebras (russ.), Akad. Nauk Azerbaı̋dshan. SSR Dokl. 37, 3-5 (1981).

[736] V. A. Kasimov, Homotopy properties of the general linear group of the Hilbert module l2(A) (russ./engl.), Mat. Sbornik 119, 376-386 / Math. USSR - Sb. 47(1984), 365-376 (1982).

[737] V. A. Kasimov, A property of Hilbert modules and Fredholm operators over C*-algebras (russ./engl.), Akad. Nauk Azerbaı̋dshan. SSR Dokl. 38, 10-14 / Amer. Math. Soc. Transl., Series 2 136(1987), 143-147 (1982).

[738] V. A. Kasimov, Homotopy triviality of the group GL*(l2(A)) (russ.), Studies in algebra and topology. Themat. Collect. Sci. Works, Baku 46-51, (1989).

[739] V. A. Kasimov, Homotopy properties of Hilbert modules (russ.), Studies in algebra and topology. Themat. Collect. Sci. Works, Baku 52-55, (1989).

[740] G. G. Kasparov, Topological invariants of elliptic operators. I: K-homology (russ./engl.), Izv. Akad. Nauk SSSR, Ser. Mat. 39, 796-838 / Math. USSR - Izv. 9(1975), 751-792 (1975).

[741] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4, 133-150 (1980).

[742] G. G. Kasparov, Operator K-theory and extensions of C*-algebras (russ./engl.), Izv. Akad. Nauk SSSR, Ser. Mat. 44, 571-630 / Math. USSR - Izv. 16(1981), no. 3 (1980).

[743] G. G. Kasparov, Operator K-theory and its applications: Elliptic Operators, Group Representations, Higher Signatures, C*-extensions, Proc. Int. Congress of Math., 987-1000 (1983).

[744] G. G. Kasparov, Operator K-theory and its applications (russ./engl.), Itogi Nauki i Tekhn., Ser. Sovrem. Probl. Mat. 27, VINITI, Moscow, 3-31 / J. Soviet Math. 37(1987), 1373-1396 (1985).

[745] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91, 147-201 (1988).

[746] G. G. Kasparov and G. Skandalis, Groupes agissant sur des immeubles de Bruhat-Tits, K-théorie operationelle et conjecture de Novikov, C. R. Acad. Sci. Paris, Ser. I 310, 171-174 (1990).

[747] G. G. Kasparov and G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov's conjecture, K-theory 4, 303-338 (1991).

[748] G. G. Kasparov, Novikov's conjecture on higher signatures: the operator K-theory approach, Contemp. Math. 145, 79-99 (1993).

[749] G. G. Kasparov, K-theory, group C*-algebras, and higher signatures (Conspectus - 1982), in: Novikov Conjectures, Index Theorems and Rigity, London Math. Soc. Lecture Note Series 226, vol. 1, edited by S. C. Ferry and A. Ranicki and J. Rosenberg (1996), p. 101-146.

[750] A. Katavolos and I. G. Todorov, Normalizers of operator algebras and reflexivity, Proc. London Math. Soc. 86, 463-484 (2003).

[751] Y. Katayama and H. Takehana, On automorphisms of generalized Cuntz algebras, in: Research in Bimodules and Quantum groups in Operator Algebras (Japanese), (Kyoto, 1997), Surikaisekikenkyusho Kokyuroku, vol. No. 1003 (1997), p. 81-93.

[752] Y. Katayama and H. Takehana, On automorphisms of generalized Cuntz algebras, Int. J. Math. 9, 493-512 (1998).

[753] E. G. Katsoulis and D. W. Kribs, Isomorphisms of algebras associated with directed graphs, Math. Ann. 330, 709-728 (2004).

[754] E. G. Katsoulis and D. W. Kribs. The C*-envelope of the tensor algebra of a directed graph. 2004. preprint math.OA/0411417 at www.arxiv.org.

[755] E. G. Katsoulis and D. W. Kribs, Applications of the Wold decomposition to the study of row contractions associated with directed graphs, Trans. Amer. Math. Soc. 357, 3739-3755 (2005).

[756] E. G. Katsoulis and D. W. Kribs, Tensor algebras of C*-correspondences and their C*-envelopes, J. Funct. Anal. 234, 226-233 (2006).

[757] T. Katsura. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras III, ideal structures. 2002. preprint, Univ. of Tokyo, Tokyo, Japan.

[758] T. Katsura. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras IV, pure infiniteness. 2002. preprint, Univ. of Tokyo, Tokyo, Japan.

[759] T. Katsura, A construction of C*-algebras from C*-correspondences, in: Advances in Quantum Dynamics (South Hadley, MA, 2002), Contemp. Math. 335, Amer. Math. Soc., Providence, RI (2003), p. 173-182.

[760] T. Katsura, A construction of C*-algebras from C*-correspondences, in: Advances in Quantum Dynamics (South Hadley, MA, 2002), Amer. Math. Soc., Providence, R.I., Contemp. Math. 335 (2003), p. 173-182.

[761] T. Katsura. Ideal structure of C*-algebras associated with C*-correspondences. 2003. preprint math.OA/0309294 at www.arxiv.org.

[762] T. Katsura. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras II, examples. 2004. preprint math.OA/0405268 at www.arxiv.org.

[763] T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, fundamental results, Trans. Amer. Math. Soc. 356, 4287-4322 (2004).

[764] T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217, 366-401 (2004).

[765] T. Katsura. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras III, ideal structures. 2004. preprint math.OA/0408190 at www.arxiv.org.

[766] T. Katsura. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras IV, pure infiniteness. 2005. preprint math.OA/0509343 at www.arxiv.org.

[767] T. Katsura, Ideal structure of C*-algebras associated with C*-correspondences, Pacific J. Math. 230, 107-146 (2007).

[768] T. Katsura and P. S. Muhly and A. Sims and M. Tomforde. Graph algebras, Exel-Laca algebras, and ultragraph algebras coincide up to Morita equivalence. 2008. preprint math.OA/0809.0164 at www.arxiv.org.

[769] T. Katsura and A. Sims and M. Tomforde. Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras. 2008. preprint math.OA/0810.4091 at www.arxiv.org.

[770] M. Kaur and Zhong-Jin Ruan, Local properties of ternary rings of operators and their linking C*-algebras, J. Funct. Anal. 195, 265-305 (2002).

[771] Katsunori Kawamura, Serre-Swan theorem for non-commutative C*-algebras, J. Geom. Phys. 48, 275-296 (2003).

[772] M. Khanehgir and M. Hassani, A note on operators in Hilbert C*-modules, Int. Math. Forum 1, no. 37-40, 1881-1885 (2006).

[773] G. N. Khimshiashvili, On homotopic structure of invertible singular operators, in: Generalized Homologies and Homotopies. Collection of works in homology theory, 5. Tbilisi: Metsniereba (ISBN 5-520-00649-0), Tr. Tbilis. Mat. Inst. A. M. Razmadze, vol. 97, edited by G. S. Chogoshvili (1992), p. 78-91.

[774] G. N. Khimshiashvili, Homotopy classes of elliptic transmission problems over C*-algebras, Georgian Math. J. 5, 453-468 (1998).

[775] Mahmood Khoshkam, Hilbert C*-modules and conditional expectations on crossed products, J. Austral. Math. Soc. (Series A) 61, 106-118 (1996).

[776] M. Khoshkam and G. Skandalis, Toeplitz algebras associated with endomorphisms and Pimsner-Voiculescu exact sequences, Pacific J. Math. 181, 315-331 (1997).

[777] M. Khoshkam and G. Skandalis, Regular representations of groupoid C*-algebras and applications to inverse semigroups, J. Reine Angew. Math. 546, 47-72 (2002).

[778] A. Khosravi and N. A. Moslemipour, Modular standard frame in Hilbert A-modules, Int. Math. J. 3, 1139-1147 (2003).

[779] A. Khosravi and N. A. Moslemipour, Basic properties of standard frame in Hilbert C*-modules, Internat. J. Applied Math. 14, 243-258 (2003).

[780] A. Khosravi and N. A. Moslemipour, Frame operator and alternate dual modular frame, Internat. J. Applied Math. 13, 177-189 (2003).

[781] A. Khosravi and M. S. Asgari, Frames and bases in Hilbert modules over locally C*-algebras, Internat. J. Pure Applied Math. 14, 171-190 (2004).

[782] A. Khosravi. Frames in tensor products of Hilbert C*-modules. 2004. talk at the 20th Internat. Conf. on Operator Theory, West University Timişoara, Romania, June 30 - July 5, 2004.

[783] A. Khosravi and M. Azhini, On Finsler pro-C*-modules, Int. J. Appl. Math. 14, 333-348 (2004).

[784] A. Khosravi and M. Azhini, Some class of morphisms of Finsler pro-C*-modules, Int. Math. Forum 1, 503-516 (2006).

[785] A. Khosravi and B. Khosravi, Frames in Tensor Products of Hilbert C*-modules, in: Operator Theory 20, Theta Ser. Adv. Math., vol. 6 (Theta, Bucharest, 2006), p. 127-133.

[786] A. Khosravi and B. Khosravi. A Paley-Wiener theorem in Hilbert C*-modules. 2006. preprint, Tehran, Iran, accepted by Applicable Anal.

[787] A. Khosravi and F. Sattari, Frames in finitely or countably generated Hilbert C*-modules, Int. Math. Forum 1, 1587-1594 (2006).

[788] A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules, Proc. Indian Acad. Sci. Math. Sci. 117, 1-12 (2007).

[789] A. Khosravi and F. Sattari, All standard frames in finitely or countably generated Hilbert C*-modules, Int. J. Pure Appl. Math. 35, 1-8 (2007).

[790] A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolut. and Inf. Process. (IJWMIP) 6, 433-446 (2007).

[791] M. Khosravi and H. Mahyar and M.S. Moslehian. Reverse Triangle Inequality for Hilbert C*-Modules. 2009. preprint, http://www.staff.vu.edu.au/RGMIA/v12n1.asp.

[792] Kyong Soo Kim and Youngoh Yang, On the numerical range for nonlinear operators, Bull. Korean Math. Soc. 21, 119-126 (1984).

[793] E. Kirchberg, Commutants of unitaries in UHF-algebras and functorial properties of exactness, J. Reine Angew. Math. 452, 39-77 (1994).

[794] L. Klotz and A. Lasarow, Extremal problems for matrix-valued polynomials on the unit circle and applications to multivariate stationary sequences, J. Approx. Theory 125, 42-62 (2003).

[795] L. Klotz, Some remarks on an interpolation problem of A, M. Yaglom (Russ./Engl., Teor. Veroyatn. Primen. 51, 425-433 / Theory Probab. Appl. 51(2007), 342-350 (2006).

[796] K. Kodaka, Automorphisms of unital C*-algebras are strongly Morita equivalent to irrational rotation algebras, Tokyo J. Math. 12, 175-179 (1989).

[797] K. Kodaka, Automorphisms, diffeomorphisms and strong Morita equivalence of irrational rotation C*-algebras, Tokyo J. Math. 12, 415-427 (1989).

[798] K. Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C*-agebras, J. Operator Theory 37, 357-369 (1997).

[799] K. Kodaka, Picard groups of irrational rotation C*-algebras, J. London Math. Soc. II 56, 179-188 (1997).

[800] K. Kodaka and T. Teruya. Involutive equivalence bimodules and inclusions of C*-algebras with Watatani index 2. 2006. preprint math.OA/0602122 at www.arxiv.org.

[801] A. Kokschal, Einige Grundzüge der Theorie der Hilbertmoduln, Master thesis, Univ. Leipzig (1995). 379 pp.

[802] B. Kolarec, Morphisms out of a split extension of a Hilbert C*-module, Glas. Mat. Ser. III 41(61), 309-315 (2006).

[803] Yu. A. Kordyukov. Noncommutative geometry of foliations. 2005. preprint math.DG/0504095 at www.arxiv.org.

[804] Yu. A. Kordyukov. Index theory and non-commutative geometry on foliated manifolds. 2009. preprint math.DG/0908.3744 at www.arxiv.org, 116 pp.

[805] J. Kraus, Correspondences and approximation properties for von Neumann algebras, Internat. J. Math. 14, 619-665 (2003).

[806] M. Krein. The mappings of degree 1. 2006. Abstract and Applied Analysis, Special Issue, http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/90837.

[807] M. Krein. The homotopy type of 1-degree automorphism groups. 2008. International Conference ”Differential Equations and Topology”, dedicated to the centenial aniversary of Lev Semenovitch Pontryagin, Moscow, June 17-22, 2008, Abstracts, p. 442.

[808] D. W. Kribs and B. Solel. A class of limit algebras associated with directed graphs. 2004. preprint math.OA/0411379 at www.arxiv.org.

[809] D. Kucerovsky, Kasparov products in KK-theory, and unbounded operators, with applications to index theory, Ph.D. thesis, Magdalen College, Univ. of Oxford (1994).

[810] D. Kucerovsky, Finite rank operators and functional calculus on Hilbert modules over abelian C*-algebras, Canad. Math. Bull. 40, 193-197 (1997).

[811] D. Kucerovsky, The KK-product of unbounded modules, K-Theory 11, 17-34 (1997).

[812] D. Kucerovsky. A simple approach to the functional calculus for unbounded operators on Hilbert modules (mit Fehlern). 1998. preprint.

[813] D. Kucerovsky, Functional calculus and representations of C0(C) on a Hilbert module, Quart. J. Math. 53, 467-477 (2002).

[814] D. Kucerovsky, Extensions contained in ideals, Trans. Amer. Math. Soc. 356, 1025-1043 (2004).

[815] D. Kucerovsky, Large Fredholm triples, J. Funct. Anal. 236, 395-408 (2006).

[816] S. H. Kulkarni, Representation of a real B*-algebra on a quaternionic Hilbert space, Proc. Amer. Math. Soc. 121, 505-509 (1994).

[817] E. Sh. Kurmakaeva and S. A. Shkarin, On projectivity of some modules over polynormed algebras of continuous functions (russ.), Vestn. Mosk. Univ. no. 5, 66-68 (1990).

[818] A. Kumjian, On equivariant sheaf cohomology and elementary C*-bundles, J. Oper. Theory 20, 207-240 (1988).

[819] A. Kumjian, Fell bundles over groupoids, Proc. Amer. Math. Soc. 126, 1115-1125 (1998).

[820] A. Kumjian, Notes on C*-algebras of graphs, Contemp. Math. 228, 189-200 (1998).

[821] A. Kumjian and D. Pask, Actions of Zk associated to higher rank graphs, Ergodic Theory Dyn. Systems 23, 1153-1172 (2003).

[822] A. Kumjian, On certain Cuntz-Pimsner algebras, Pacific J. Math. 217, 275-289 (2004).

[823] A. Kumjian and D. Pask and A. Sims. C*-algebras associated to coverings of k-graphs. 2006. preprint math.OA/0612204 at www.arxiv.org.

[824] A. Kumjian and D. Pask and A. Sims. On k-morphs. 2007. preprint math.OA/0712.1072 at www.arxiv.org.

[825] A. G. Kusraev, On a functional realization of AW*-algebras of type I (russ./engl.), Sibirsk. Mat. Zh. 32, no. 3, 78-88 / Sibirian Math. J. 32(1991), no. 3, 416-424 (1991).

[826] A. G. Kusraev, Boolean-valued analysis and JB-algebras (Russ./Engl.), Sibirsk. Mat. Zh. 35, no. 1, 124-134 / Sibirian Math. J. 35(1994), no. 1, 114-122 (1994).

[827] A. G. Kusraev, Boolean-valued analysis of involutive Banach algebras (Severo-Osetinskiĭ Gosudarstvennyĭ Universitet imeni K. L. Khetagurova, Vladikavkaz, 1996).

[828] A. G. Kusraev, Cyclically compact operators in Banach spaces, Vladikavkazskiy Matematicheskiy Shurnal 2, issue 1 (2000).

[829] A. G. Kusraev and S. S. Kutateladse. Boolean methods in the theory of vector lattices. 2006. preprint math.FA/0605030 at www.arxiv.org.

[830] J. Kustermans and A. van Daele, C*-algebraic quantum groups arising from algebraic quantum groups, Internat. J. Math. 8, 1067-1139 (1997).

[831] J. Kustermans. The functional calculus of regular operators on Hilbert C*-modules revisited. 1997. preprint, funct-an@babbage.sissa.it, 9706007 / Odense Universitet, Odense, Denmark.

[832] J. Kustermans. One-parameter representations on C*-algebras. 1997. preprint, funct-an@babbage.sissa.it, 9707009 / Odense Universitet, Odense, Denmark.

[833] J. Kustermans, Regular C*-valued weights, J. Operator Theory 44, 151-205 (2000).

[834] M. Kusuda, Morita equivalence for C*-algebras with the weak Banach-Saks property, Quart. J. Math. 52, 455-461 (2001).

[835] M. Kusuda, Morita equivalence of scattered C*-algebras and the Radon-Nikodým property for imprimitivity bimodules, Rev. Roumaine Math. Pures Appl. 46, 761-773 (2001).

[836] M. Kusuda, Discrete spectra of C*-algebras and complemented submodules of Hilbert C*-modules, Proc. Amer. Math. Soc. 131, 3075-3081 (2003).

[837] M. Kusuda, Morita equivalence for C*-algebras with the Dunford-Pettis property and C*-crossed products, Quart. J. Math. 54, 445-452 (2003).

[838] M. Kusuda, Discrete spectra of C*-algebras and orthogonally closed submodules in Hilbert C*-modules, Proc. Amer. Math. Soc. 133, 3341-3344 (2005).

[839] M. Kusuda, Elementary proof of Schweitzer's theorem on Hilbert C*-modules in which all closed submodules are orthogonally closed, Technology Reports of Kansai University 47, 75-78 (2005).

[840] M. Kusuda, An alternative proof of the duality theorem for crossed products of Hilbert C*-modules, Tech. Rep. Kansai Univ. 48, 111-117 (2006).

[841] M. Kusuda, Morita equivalence for C*-algebras with the weak Banach-Saks property. II, Proc. Edinburgh Math. Soc. 50, 185-195 (2007).

[842] M. Kusuda, Duality for crossed products of Hilbert C*-modules, J. Operator Theory 60, 85-112 (2008).

[843] B. K. Kwasniewski and A. V. Lebedev. Relative Cuntz-Pimsner algebras, partial isometric crossed products and reduction of relations. 2007. preprint math.OA/0704.3811 at www.arxiv.org.

[844] B. K. Kwasniewski. C*-algebras generalizing relative Cuntz-Pimsner and Doplicher-Roberts algebras. 2009. preprint math.OA/0906.4382 at www.arxiv.org.

[845] Seung-Hyeok Kye and Zhong-Jin Ruan. Weak expectation property and local projectivity for operator spaces. 1998. preprint.

[846] Seung-Hyeok Kye and Zhong-Jin Ruan, On local lifting property for operator spaces, J. Funct. Anal. 168, 355-379 (1999).

[847] M. Laca and S. Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal. 211, 457-482 (2004).

[848] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Ph.D. thesis, Université Paris-Sud, Paris, France (1999).

[849] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149, 1-95 (2002).

[850] D. Laison, On W*-embeddings of AW*-algebras, Proc. Amer. Math. Soc. 35, 499-502 (1972).

[851] A. Lambert, A Hilbert C*-module view of some spaces related to probalistic conditional expectations, Quaest. Math. 22, 165-170 (1999).

[852] M. C. Lammers. Frames, Hilbert C*-modules and an application to wireless communications. 2001. Western Washington University, Bellingham, WA, U.S.A.; talk given at the Univ. of South Carolina, Febr. 5.

[853] E. C. Lance, Unitary operators on Hilbert C*-modules, Bull. London Math. Soc. 26, 363-366 (1994).

[854] E. C. Lance, Hilbert C*-modules - a toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210 (Cambridge University Press, Cambridge, England, 1995).

[855] G. Landi, An introduction to noncommutative spaces and their geometry (Springer-Verlag, Berlin, 1997).

[856] G. Landi and A. A. Pavlov. On orthogonal systems in Hilbert C*-modules. 2009. preprint math.OA/0906.0822 at www.arxiv.org.

[857] E. M. Landesmann and B. Russo, The second dual of a C*-ternary ring, Canad. Math. Bull. 26, 241-246 (1983).

[858] N. P. Landsman. Quantisierung der ’Moment map’ durch Hilbert-C*-Moduln und Anwendungen in der algebraischen Quantenfeldtheorie. 1994. Verhandlungen der Deutschen Physikalischen Gesellschaft, Heft 4/1994, Bericht über die 58. Physikerjahrestagung der Fachgremien, Kurzfassung des Vortrages MP 3A.12, p. 556.

[859] N. P. Landsman, Rieffel induction as generalized quantum Marsden-Weinstein reduction / Erratum, J. Geom. Phys. 15 / 17, 285-319 / 298 (1995).

[860] N. P. Landsman, The quantization of constraint systems: from symplectic reduction to Rieffel induction, in: Quantization, Coherent States and Poisson Structures, Proc. XIV. Workshop on Geometric Methods in Physics, Białowieża, Poland, 1995, Polish Scientific Publishers, Warszaw, edited by A. Strasburger and S. T. Ali and J.-P. Antoine and J.-P. Gazeau and A. Odzijewski (1998), p. 79-95.

[861] N. P. Landsman. Lecture Notes on C*-algebras, Hilbert C*-modules and Quantum Mechanics. 1998/2004. preprint math-ph/9807030, xxx.lanl.gov / http://remote.science.uva.nl/~npl/ck.html.

[862] N. P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer Monographs in Mathematics (Springer-Verlag, New York, 1998).

[863] N. P. Landsman. Functoriality and Morita equivalence of C*-algebras and Poisson manifolds associated to groupoids. 2000. preprint math-ph/0008036, www.arxiv.org.

[864] N. P. Landsman, The Muhly-Renault-Williams theorem for Lie groupoids and its classical counterpart, Lett. Math. Phys. 54, 43-59 (2000).

[865] N. P. Landsman, Bicategories of operator algebras and Poisson manifolds, in: Mathematical Physics in Mathematics and Physics (Siena, 2000), Fields Inst. Commun., vol. 30 (2001), p. 271-286.

[866] N. P. Landsman, Operator algebras and Poisson manifolds associated to groupoids, Comm. Math. Phys. 222, 97-116 (2001).

[867] N. P. Landsman, Quantized reduction as a tensor product, in: Quantization of Singular Symplectic Quotients, Progr. Math. 198, Birkhäuser, Basel (2001), p. 137-180.

[868] N. P. Landsman, Quantization as a functor, in: Quantization, Poisson Brackets and beyond (Manchester, 2001), Contemp. Math. 315, Amer. Math. Soc., Providence, RI (2002), p. 9-24.

[869] N. S. Larsen and I. Raeburn, Representations of Hecke algebras and dilations of semigroup crossed products, J. London Math. Soc. (2) 66, 198-212 (2002).

[870] N. S. Larsen. Crossed products by abelian semigroups via transfer operators. 2005. preprint math.OA/0502307 at www.arxiv.org.

[871] N. S. Larsen and I. Raeburn, Projective multi-resolution analyses arising from direct limits of Hilbert modules, Math. Scand. 100, 317-360 (2007).

[872] D. R. Larson. Unitary systems, wavelet sets, and operator-theoretic interpolation of wavelets and frames. 2005. chapter in WSPC/Lecture Notes Series, 46 pp.

[873] A. Lasarow, Aufbau einer Szegö-Theorie für rationale Matrixfunktionen, Ph.D. thesis, Universität Leipzig, Leipzig, Germany (2000). 284 pp.

[874] F. Latremoliere and N. Ormes. C*-algebraic characterization of bounded orbit injection equivalence for minimal free Cantor systems. 2009. preprint, math.DS/0903.1881 at www.arxiv.org.

[875] C. Laurie and S. C. Power, On the C*-envelope of approximately finite-dimensional operator algebras, Math. Scand. 80, 107-124 (1997).

[876] Sa Ge Lee. The M-bimodules of unital C*-algebras. 1996. RIM-GARC preprint 96-19, Research Inst. of Math., Seoul National Univ., Seoul, Korea.

[877] Sanghun Lee and Yongchan Kim, Double B-centralizers of pre-Hilbert B-modules, Kyungpook Math. J. 22, 303-307 (1982).

[878] E. Leichtnam and P. Piazza, A higher Atiyah-Patodi-Singer index theorem for te signature operator on Galois coverings, Annals Global Anal. Geom. 18, 171-189 (2000).

[879] E. Leichtnam and P. Piazza. Elliptic operators and higher signatures. 2004. preprint math.DG/0406020 at www.arxiv.org.

[880] E. Leichtnam and P. Piazza, Étale groupoids, eta invariants and index theory, J. Reine Angew. Math. 587, 169-233 (2005).

[881] Ch. Le Merdi, Analytic factorization and completely bounded maps, Israel J. Math. 88, 381-409 (1994).

[882] Ch. Le Merdi, On the duality of operator spaces, Canad. Math. Bull. 38, 334-346 (1995).

[883] Ch. Le Merdi, Factorization of P-completely bounded multilinear maps, Pacific J. Math. 172, 187-213 (1996).

[884] Ch. Le Merdi, A remark on the tensor product of two maximal operator spaces, Proc. Edinburgh Math. Soc. 40, 375-381 (1997).

[885] Ch. LeMerdi. A strong similarity property of nuclear C*-algebras. 1998. preprint, Univ. de Franche Comté, CNRS, UMR 6623, Besançon, France.

[886] Ch. Le Merdi, An operator space characterization of dual operator algebras, Amer. J. Math. 121, 55-63 (1999).

[887] Ch. Le Merdi, The weak* similarity property on dual operator algebras, Semigroup Fiorum 56, 205-224 (1998).

[888] M. Lesch, Die K-Theorie der C*-Algebra der Toeplitzoperatoren auf den Lie-Sphären, Ph.D. thesis, Universität Marburg/Lahn, FRG (1988).

[889] Hanfeng Li, Strong Morita equivalence of higher-dimensional noncommutative tori, J. Reine Angew. Math. 576, 167-180 (2004).

[890] Hanfing Li. A Hilbert C*-module admitting no frames. 2008. preprint math.OA/0811.1535 at www.arxiv.org / to appear in Bull. London Math. Soc.

[891] V. Liebscher and M. Skeide, Units for the time ordered Fock module, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 545-551 (2001).

[892] V. Liebscher and M. Skeide. Constructing units in product systems. 2005. preprint math.OA/0510677 at www.arxiv.org.

[893] Huaxin Lin, Bounded module maps and pure completely positive maps, J. Operator Theory 26, 121-138 (1991).

[894] Huaxin Lin, Generalized Weyl - von Neumann theorems, Int. J. Math. 2, 725-739 (1991).

[895] Huaxin Lin, Hilbert C*-modules and their bounded module maps, Science in China (Series A) 34:4, 2-13 (1991).

[896] Huaxin Lin, Injective Hilbert C*-modules, Pacific J. Math. 154, 131-164 (1992).

[897] Huaxin Lin, Extensions of C*-algebras with real rank zero, Internat. J. Math. 4, 231-252 (1993).

[898] Huaxin Lin, Extensions of multipliers and injective Hilbert modules, Chin. Ann. Math., Ser. B 14, 387-396 / Chin. Ann. Math., Ser. A 14(1993), 630. (1993).

[899] Huaxin Lin, The generalized Weyl - von Neumann theorem and C*-algebra extensions, in: Algebraic Methods in Operator Theory, edited by R. Curto and P. E. T. Jørgensen (Birkhäuser, Boston - Basel - Berlin, 1994).

[900] Qing Lin, Cut-down method in the inductive limit decomposition of non-commutative tori III: A complete answer in 3 dimensions, Commun. Math. Phys. 179, 555-575 (1996).

[901] Xu Lin and Tian Zhou Xu, Automatic continuity of derivations of Hilbert C*-modules (Chinese), J. Baoji College Arts Sci. Nat. Sci. no. 2, 14-17 (1995).

[902] F. Lledó, Operator-algebraic methods in mathematical physics: duality of compact groups and gauge quantum field theory, Ph.D. thesis, Universität Aachen, Germany (2005).

[903] F. Lledó and E. Vasselli. On the nuclearity of certain Cuntz-Pimsner algebras. 2006. preprint math.OA/0611520 at www.arxiv.org.

[904] F. Lledó and E. Vasselli. Realization of minimal C*-dynamical systems in terms of Cuntz-Pimsner algebras. 2007. preprint math.OA/0702775 at www.arxiv.org.

[905] A. I. Loginov and V. S. Shulman, Vector-valued duality for modules over Banach algebras (russ./engl.), Izv. Akad. Nauk Rossii, Ser. Mat. 57, no. 4, 3-35 / Russ. Acad. Sci. Izv., Math. 43(1994), no. 1, 1-29 (1993).

[906] J. Lott. Diffeomorphisms and noncommutative analytic torsion. Mem. Amer. Math. Soc. 141. 1999. no. 673, viii+56 pp.

[907] J. Lott, Delocalized L2-invariants, J. Funct. Anal. 169, 1-31 (1999).

[908] R. M. Loynes, Linear operators in VH-spaces, Trans. Amer. Math. Soc. 166, 167-180 (1965).

[909] R. M. Loynes, On generalized positive definite functions, Proc. London Math. Soc. 15, 373-384 (1965).

[910] R. M. Loynes, On a generalization of second-order stationary processes, Proc. London Math. Soc. 15, 385-398 (1965).

[911] Yun-Gang Lu. Quantum Poisson processes on Hilbert modules. 1992. Volterra preprint no. 114, Università di Roma ”Tor Vergata”, Italy / submitted to Ann. I.H.P. Prob. Stat.

[912] Yun-Gang Lu. Free stochastic calculus on Hilbert modules. 1993. Volterra preprint, Università di Roma ”Tor Vergata”, Italy.

[913] Yun-Gang Lu. Quantum stochastic calculus on Hilbert modules. 1994. preprint, Università di Roma ”Tor Vergata”, Italy / to appear in Math. Zeitschr.

[914] Yun-Gang Lu, Passage from quantum systems with continuous spectrum to quantum Poisson processes on Hilbert modules, J. Math. Phys. 36, 142-176 (1995).

[915] Yun-Gang Lu, A note on free stochastic calculus on Hilbert modules and its applications, Random Oper. Stochastic Equations 4, 91-102 (1996).

[916] W. Lück and M. Rothenberg, Reidemeister torsion and the K-theory of von Neumann algebras, K-theory 5, 213-264 (1991).

[917] W. Lück, Hilbert modules and modules over finite von Neumann algebras and applications to L2-invariants, Math. Annalen 309, 247-285 (1997).

[918] W. Lück, L2-Invarianten von Mannigfaltigkeiten und Gruppen, Jahresber. Deutsch. Math.-Verein. 99, 101-109 (1997).

[919] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and applications to L2-Betti numbers, I: Foundations, J. Reine Angew. Math. 495, 135-162 (1998).

[920] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and applications to L2-Betti numbers, II: Applications to Grothendieck groups, L2-Euler characteristics and Burnside groups, J. Reine Angew. Math. 496, 213-236 (1998).

[921] W. Lück and Th. Schick, L2-torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal. 9, 518-567 (1999).

[922] W. Lück, L2-invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge / A Series of Modern Surveys in Mathematics v. 44 (Springer-Verlag, Berlin, 2002), p. 601 pp.

[923] F. Luef. Gabor analysis, Rieffel induction, and Feichtinger's algebra as a link. 2003. Workshop on Time-frequency Analysis and Applications, Sept. 22-26, 2003, National University of Singapore, Inst. of Math. Sciences, org.: H. G. Feichtinger, Say Song Goh, Zuowei Shen.

[924] F. Luef. Gabor analysis, noncommutative tori and Feichtinger's algebra. 2005. preprint math.FA/0504146 at www.arxiv.org, to appear in Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publishers, River Edge.

[925] F. Luef. The density theorem in Gabor analysis and Morita equivalence. 2005. preprint, Universität Wien, Austria.

[926] F. Luef. Wiener amalgam spaces for the fundamental identity of Gabor analysis. 2005. preprint math.FA/0503364 at www.arxiv.org, to appear in Proc. ElEscorial 2004, Collectanea mathematica.

[927] F. Luef, Gabor analysis meets non-commutative geometry, Ph.D. thesis, Universität Wien, Mathematisches Institut, Wien (Vienna), Austria (Nov. 2005). 150 pp.

[928] F. Luef, On spectral invariance of non-commutative tori, in: Operator Theory, Operator Algebras, and Applications, Contemp. Math. 414 (Amer. Math. Soc., 2006), p. 131-146.

[929] F. Luef, Gabor analysis, Rieffel induction, and Feichtinger's algebra [as a link], in: Gabor and Wavelet frames, IMS Lecture Notes Series, vol. 10 (2007), p. 77-106 Workshop on Functional and Harmonic Analysis of Wavelets and Frames, 4-7 Aug., 2004, National University of Singapore, Inst. of Math. Sciences, org.: J. Packer, Qiyu Sun, Wai Shing Tang / preprint math.FA/0504146 at www.arxiv.org.

[930] F. Luef. Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. 2008. preprint, math.OA/0807.3170.

[931] F. Luef and Yu. I. Manin. Quantum theta functions and Gabor frames for modulation spaces. 2008. preprint, math.QA/0809.2716 at www.arxiv.org / to appear in Lett. in Math. Phys.

[932] G. Luke and A. S. Mishchenko, Vector Bundles and Their Applications (Kluwer Academic Publ., Dordrecht, Netherlands, 1998).

[933] F. H. Lutz, Beispiele nichtkommutativer Geometrien, Master thesis, Eberhard-Karls-Universität Tübingen, F.R.G., März (1995).

[934] M. Macho-Stadler and M. O'uchi, Correspondence of groupoid C*-algebras, J. Oper. Theory 42, 103-119 (1999).

[935] M. Macho-Stadler, Correspondence of groupoid C*-algebras, J. Operator Theory 42, 103-119 (1999).

[936] B. Magajna. Hilbert modules and completely bounded operators. 1994. preprint, University of Ljubljana, Ljubljana, Slovenia.

[937] B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Anal. 129, 325-348 (1995).

[938] B. Magajna, Tensor products over abelian W*-algebras, Trans. Amer. Math. Soc. 348, 2427-2440 (1996).

[939] B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125, 849-852 (1997).

[940] B. Magajna, A transitivity problem for completely bounded mappings, Houston J. Math. 23, 109-120 (1997).

[941] B. Magajna, Hilbert modules and tensor products of operator spaces, in: Linear Operators. Proceedings of the semester organized at the Stefan Banach International Mathematical Center, Warsaw, Poland, Febr. 7 - May 15, 1994, edited by J. Janas et al. (Polish Academy of Sciences, Inst. of Mathematics, Banach Center Publ. 38, 1997), p. 227-246.

[942] B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc. (3) 74, 201-240 (1997).

[943] B. Magajna, Mappings preserving submodules of Hilbert C*-modules, J. London Math. Soc. (2) 58, 153-162 (1998).

[944] B. Magajna, A topology for operator modules over W*-algebras, J. Funct. Anal. 154, 17-41 (1998).

[945] B. Magajna, The minimal operator module of a Banach module, Proc. Edinburgh Math. Soc. 42, 191-208 (1998).

[946] B. Magajna, Duality and normal parts of operator modules, J. Funct. Anal. 219, 306-339 (2005).

[947] B. Magajna, Injective cogenerators among operator bimodules, Houston J. Math. 33, 1091-1115 (2007).

[948] M. Maghfoul, Semi-exactitude du bifoncteur de Kasparov équivariante, K-Theory 16, 245-276 (1999).

[949] M. Mahmoudiyeh, A note on adjointability of operators on Hilbert C*-modules, Int. J. Pure Appl. Math. 26, 135-138 (2006).

[950] A. Mallios, Hermitian K-theory over topological *-algebras, J. Math. Anal. Appl. 106, 454-539 (1985).

[951] A. Mallios, Geometry of Vector Sheaves, I and II (Kluwer Academic Publ., Dordrecht, Netherlands, 1998), p. I, sect. IV.9.

[952] K. Mansfield, Induced representations of crossed products by coactions, J. Funct. Anal. 97, 112-161 (1991).

[953] V. M. Manuilov, Diagonalization of compact operators on Hilbert modules over W*-algebras of finite type (russ./engl.), Uspekhi Mat. Nauk 49:2, 159-160 / Russ. Math. Surv. 49(1994), no. 2, 166-167 (1994).

[954] V. M. Manuilov, Diagonalization of compact operators on Hilbert modules over finite W*-algebras (engl.), Annals Global. Anal. Geom. 13, 207-226 (1995).

[955] V. M. Manuilov, On eigenvalues of the perturbed Schrödinger operator with an irrational magnetic flow (russ./engl.), Funkt. Anal. i Prilozh. 28, no. 2, 57-60 / Funct. Anal. Appl. 28(1994), no. 2, 120-122 (1994).

[956] V. M. Manuilov. Lusin's C-property is not valid for functional Hilbert modules. 1995. funct-an@babbage.sissa.it, preprint 9501004.

[957] V. M. Manuilov, Representability of functionals and adjointability of operators on Hilbert C*-modules (russ./engl.), Funkt. Anal. i Prilozh. 30, 83-86 / Funct. Anal. Appl. 30(1996), 287-289 (1996).

[958] V. M. Manuilov, Adjointability of operators on Hilbert C*-modules, Acta Math. Univ. Comenianae 65, no. 2, 161-169 (1996).

[959] V. M. Manuilov, Diagonalization of compact operators in Hilbert modules over C*-algebras of zero real rank (Russ./Engl.), Mat. Zametki 62, 865-870 / Math. Notes 62(1998), 726-730 (1997).

[960] V. M. Manuilov, Diagonalizing operators over continuous fields of C*-algebras (Russ./Engl.), Matem. Sbornik 188, no. 6, 99-118 / Math. Notes 62(1997), 726-730 (1997).

[961] V. M. Manuilov and E. V. Troı̋tsky. Hilbert C*-modules and Operators (russ.). 1997. preprint, Moscow State University, Moscow, Russia; prepaired for submission to VINITI, Moscow, Russia.

[962] V. M. Manuilov and E. V. Troı̋tsky, Hilbert C*- and W*-modules and their morphisms, Functional Analysis 6, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., v. 53, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow, ed.: A. Ya. Khelemskii / J. Math. Sci. 98(2000), 137-201 (1998).

[963] V. M. Manuilov, Diagonalizing operators in Hilbert modules over C*-algebras (Russ./Engl.), Functional Analysis 6, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., v. 53, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow, ed.: A. Ya. Khelemskii / J. Math. Sci. 98(2000), 202-244 (1998).

[964] V. M. Manuilov, An example of a noncomplemented Hilbert W*-module (Russ./Engl.), Vestnik Moskov. Univ., Ser. I: Mat. Mekh. no. 5, 58-59 / Moscow Univ. Math. Bull. 2000, 38-39 (2000).

[965] V. M. Manuilov and E. V. Troı̋tsky, Hilbert C*-Modules, Translations of Mathematical Monographs v. 226 (American Mathematical Society, Providence, R.I., USA, 2005).

[966] V. M. Manuilov and K. Thomsen. Quasidiagonal extensions and sequentially trivial asymptotic homomorphisms. 2006. preprint.

[967] V. Marotta and A. Naddeo, Twisted conformal field theories and Morita equivalence, Nuclear Physics B 810 [FS], 575-590 (2009).

[968] A. E. Marrero and P. S. Muhly, Cuntz-Pimsner algebras, completely positive maps and Morita equivalence, Proc. Amer. Math. Soc. 134, 1133-1135 (2006).

[969] R. A. D. Martins. Noncommutative geometry, topology and the standard model vacuum. 2006. preprint hep-th/0609140 at www.arxiv.org.

[970] P. R. Masani, Cramérs theorem on monotone matrix-valued functions and the Wold decomposition, in: Probability and Statistics - The Harald Cramér Volume, edited by U. Grenande (Almquist & Wiksell, Stockholm, 1959), p. 175-189.

[971] P. R. Masani, The prediction theory of multivariable stochastic processes, III. Unbounded spectral densities, Acta Math. 104, 141-162 (1960).

[972] P. R. Masani, Shift invariant spaces and prediction theory, Acta Math. 107, 275-290 (1962).

[973] P. R. Masani, Recent trends in multivariate prediction theory, in: Multivariate Analysis, Proc. Int. Symp., Dayton, Ohio, June 1965, edited by P. R. Krishnaiah (Academic Press, New York, 1966), p. 351-382.

[974] V. Mathai and A. L. Carey, L2-acyclicity and L2-torsion invariants, in: Geometric and Topological Invariants of Elliptic Operators, Contemp. Math., Sommer Research Conference, Bruswick, July 23-29, 1988, vol. 105 (1990), p. 91-118.

[975] V. Mathai, Von Neumann algebra invariants of Dirac Operators, J. Funct. Anal. 152, 1-21 (1998).

[976] V. Mathai, L2-invariants of covering spaces, in: Geometric Analysis and Lie Theory in Mathematics and Physics, Austral. Math. Soc. Lecture Ser. 11 (Cambridge Univ. Press, Cambridge, 1998), p. 209-242.

[977] K. Matsumoto, Periodic distributions on C*-algebras, J. Math. Soc. Japan 47, 687-718 (1995).

[978] K. Matsumoto, Strong shift equivalence of symbolical dynamical systems and Morita equivalence of C*-algebras, Ergodic Theory Dynam. systems 24, 199-215 (2004).

[979] K. Matsumoto. Actions of symbolic dynamical systems on C*-algebras. 2007. preprint, to appear in J. Reine Angew. Math.

[980] K. Matsumoto. Actions of symbolic dynamical systems on C*-algebras II. Simplicity of C*-symbolic crossed products and some examples. 2007. preprint math.OA/0705.3283 at www.arxiv.org.

[981] M. S. Matvejchuk, Linearity of a measure in purely infinite AW*-algebras (russ.), Dokl. Akad. Nauk USSR no. 11, 12-14 (1986).

[982] P. J. McCann and A. L. Carey, A discrete model of the integer quantum Hall effect, Publ. RIMS Kyoto Univ. 32, 117-156 (1996).

[983] T. Meier Carlsen. Cuntz-Pimsner C*-algebras associated with subshifts. 2005. preprint math.OA/0505503 at www.arxiv.org.

[984] S. T. Melo and M. I. Merklen. C*-algebra-valued-symbol pseudodifferential operators, abstract characterizations. 2006. preprint math.OA/0610378 at www.arxiv.org / to appear in Proc. Amer. Math. Soc., 2008.

[985] S. T. Melo and M. I. Merklen. Cordes characterization for pseudodifferential operators with symbols valued on a noncommutative C*-algebra. 2008. preprint math.OA/0812.4023 at www.arxiv.org.

[986] Bin Meng and Maozheng Guo and Xiaohong Cao, Free Fischer information and amalgamated freeness (Engl./Chin., Appl. Math. Mech. (Engl. Edition) 25, 1100-1106 / translated from Appl. Math. Mech. 25(2004), no. 10, 1007-1013 (2004).

[987] Bin Meng and Maozheng Guo and Xiaohong Cao, Operator-valued free Fischer information and modular frames, Proc. Amer. Math. Soc. 133, 3087-3096 (2005).

[988] Bin Meng and Maozheng Guo and Xiaohong Cao, Some applications of free Fisher information on frame theory, J. Math. Anal. Appl. 311, 466-478 (2005).

[989] Bin Meng, Gabor unitary systems on Hilbert C*-modules (Chin.), J. Math. Res. Exposition 25, 325-330 (2005).

[990] Bin Meng. Operator-valued free Fisher information of random matrices. 2006. preprint math.OA/0601527 at www.arxiv.org.

[991] Bin Meng, Rank-preserving module maps, J. Math. Anal. Appl. 344, 1-8 (2008).

[992] M. I. Merklen Olivera, Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturado por Rieffel, Ph.D. thesis, Universidade de São Paulo, Inst. Mat. Estat., Brasil (2002). math.OA/0309464 at www.arxiv.org.

[993] M. I. Merklen Olivera, Boundedness of pseudodifferential operators of C*-algebra-valued symbol, Proc. Royal Soc. Edinburgh, Sect. A Math. 135, 1279-1286 (2005).

[994] R. Meyer, Equivariant Kasparov theory and generalized homomorphisms, K-theory 21, 201-228 (2000).

[995] R. Meyer, Generalized fixed point algebras and square-integrable group actions, J. Funct. Anal. 186, 167-195 (2001).

[996] J. Miller, Signature operators and surgery groups over C*-algebras, K-Theory 13, 363-402 (1998).

[997] J. G. Miller, Differential operators over C*-algebras, Rocky Mountain J. Math. 29, 239-269 (1999).

[998] J. G. Miller. The Euler characteristics and finiteness obstruction of manifolds with periodic ends. 2002. preprint, Indiana University and Purdue University at Indianapolis.

[999] J. A. Mingo, K-theory and multipliers of stable C*-algebras, Ph.D. thesis, Dalhousie Univ., Halifax, N. S., Canada (1982).

[1000] J. A. Mingo, On the contractability of the unitary group of the Hilbert space over a C*-algebra, Integral Equat. Operator Theory 5, 888-891 (1982).

[1001] J. Mingo and W. Phillips, Equivariant triviality theorems for Hilbert C*-modules, Proc. Amer. Math. Soc. 91, 225-230 (1984).

[1002] J. A. Mingo, K-theory and multipliers of stable C*-algebras, Trans. Amer. Math. Soc. 299, 397-411 (1987).

[1003] J. A. Mingo, Inner completely positive maps on von Neumann algebras, Proc. Symp. Pure Math. 51, p. 2, 213-217 (1990).

[1004] A. K. Mirmostafaee, Approximate isometries in Hilbert C*-modules, Math. Commun. 14, 167-176 (2009).

[1005] A. S. Mishchenko and Yu. P. Solov'ov, On infinite-dimensional representations of fundamental groups and on formulae of Hirzebruch type (russ./engl.), Dokl. Akad. Nauk SSSR 234, 761-764 / Soviet Math. (Doklady) 18(1)(1977), 767-771 (1977).

[1006] A. S. Mishchenko, The theory of elliptic operators over C*-algebras (russ./engl.), Dokl. Akad. Nauk SSSR 239, 1289-1291 / Soviet Math. (Doklady) 19(1978), 512-515 (1978).

[1007] A. S. Mishchenko, Banach algebras, pseudodifferential operators and their applications to K-theory (russ./engl.), Uspekhi Mat. Nauk 34:6, 67-79 / Russ. Math. Surv. 34(1979), no. 6, 77-91 (1979).

[1008] A. S. Mishchenko, C*-algebras and K-theory, Lecture Notes Math. 763, Springer-Verlag, Berlin, pp.262-274 (1979).

[1009] A. S. Mishchenko and A. T. Fomenko, The index of elliptic operators over C*-algebras (russ./engl.), Izv. Akad. Nauk SSSR, Ser. Mat. 43, 831-859 / Math. USSR - Izv. 15(1980), 87-112 (1979).

[1010] A. S. Mishchenko and F. Sharipov, Independence of spectra of elliptic operators with random coefficients (russ./engl.), Vestn. Moskov. Univ., Ser. I: Mat.-Mekh. no.6, 51-56 / Moscow Univ. Math. Bull. 38(1983), no. 6, 59-64 (1983).

[1011] A. S. Mishchenko, Representations of compact groups on Hilbert modules over C*-algebras (russ./engl.), Trudy Mat. Inst. im. V. A. Steklova 166, 161-176 / Proc. Steklov Inst. Math. 166(1986), 179-195 (1984).

[1012] A. S. Mishchenko, Vector Bundles and their Applications (russ.) (Nauka, Moscow, USSR, 1984).

[1013] A. S. Mishchenko and O. G. Filippov, The reduction of elliptical operators with almost periodical coefficients to operators on compact manifolds (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 5, 78-81 / Moscow Univ. Math. Bull. 44(1989), no. 5, 73-75 (1989).

[1014] Gadadhar Misra and N. S. Narasimha Sastry, Completely bounded modules and associated extremal problems, J. Funct. Anal. 91, 213-220 (1990).

[1015] Gadadhar Misra and Vishwambhar Pati, Contractive and completely contractive modules, matricial tangent vectors and distance decreasing metrics, J. Oper. Theory 30, no. 2, 353-380 (1993).

[1016] Gadadhar Misra, Completely contractive Hilbert modules and Parrott's example, Acta Math. Hungar. 63, 291-303 (1994).

[1017] P. D. Mitchener, C*-categories, Proc. London Math. Soc. (3) 84, 375-404 (2002).

[1018] P. D. Mitchener, KK-theory of C*-categories and the analytic assembly map, K-Theory 26, 307-344 (2002).

[1019] L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Matematički 25(45), 335-345 (1990).

[1020] L. Molnár, A note on Saworotnow's representation theorem on positive definite functions, Houston J. Math. 17, 89-99 (1991).

[1021] L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. Debrecen 40, 323-325 (1992).

[1022] L. Molnár, Representations of the trace class of an H*-algebra, Proc. Amer. Math. Soc. 115, 167-170 (1992).

[1023] L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42, 649-656 (1992).

[1024] L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hungar. 26, 219-222 (1993).

[1025] L. Molnár, On Saworotnow's Hilbert A-modules, Glas. Mat. 28, 259-287 (1993).

[1026] L. Molnár, An algebraic approach to Wigner's unitary-antiunitary theorem, J. Austral. Math. Soc. (Series A) 65, 354-369 (1998).

[1027] L. Molnár, A generalization of Wigner's unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40, 5544-5554 (1999).

[1028] L. Molár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. ???, ??? (2008).

[1029] C. C. Moore and C. Schochet, Global Analysis and Foliated Spaces, Math. Sciences Research Institut Publication, no. 9 (Springer-Verlag, New York, 1988).

[1030] K. Mori, Discrete series representations and K-theory of Hilbert C*-modules, J. Fac. Sci. Technol., Kinki Univ. 24, 1-10 (1988).

[1031] H. Moscovici, Eigenvalue inequalities and Poincaré Duality in noncommutative geometry, Commun. Math. Phys. 184, 619-628 (1997).

[1032] M. S. Moslehian, On full Hilbert C*-modules, Bull. Malays. Math. Soc. 24, 45-47 (2001).

[1033] M. S. Moslehian. What is a Hilbert C*-module?. 2002. preprint math.OA/0212368 at www.arxiv.org / MPS: Pure Mathematics/0301002 at www.mathpreprints.com / Proc. First Workshop on C*-algebras (Mashhad, 2001), 29-38, Ferdowsi Univ. of Mashhad, Mashhad, Iran, 2003.

[1034] M. S. Moslehian, On Hilbert C*-modules, in: Proceedings of the First Workshop on C*-algebras (Mashhad, Iran, 2001) (Ferdowsi University of Mashhad, Mashhad, Iran, 2003), p. 29-38.

[1035] M. S. Moslehian. Stability of adjointable mappings in Hilbert C*-modules. 2005. preprint math.FA/0501139 at www.arxiv.org.

[1036] M. S. Moslehian. Approximate C*-ternary ring homomorphisms associated to the Trif equation. 2005. preprint math.FA/0511539 at www.arxiv.org.

[1037] M. S. Moslehian and L. Szekelyhidi. Stability of ternary homomorphisms via generalized Jensen equation. 2005. preprint math.FA/0511540 at www.arxiv.org.

[1038] M. S. Moslehian. Operator extensions of Hua's inequality. 2008. preprint math.OA/0810.1921 at www.arxiv.org.

[1039] M. S. Moslehian and L.-E. Persson. Reverse Cauchy-Schwarz inequalities for positive C*-valued sesquilinear forms. 2009. preprint math.OA/0905.4065 at www.arxiv.org.

[1040] M. S. Moslehian and R. Rajić. Generalzations of Bohr's inequality in Hilbert C*-modules. 2009. preprint math.OA/0905.3507 at www.arxiv.org.

[1041] M. S. Moslehian. Operator extensions of Hua's inequality. Lin. Algebra Appl. 430. 2009. 1131-1139.

[1042] B. Moulay-Tahar, A longitudinal Lefschetz theorem in K-theory, K-Theory 12, 227-257 (1997).

[1043] P. S. Muhly and J. N. Renault and D. P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Oper. Theory 17, 3-22 (1987).

[1044] P. S. Muhly and B. Solel, Hilbert modules and partial orders, C. R. Acad. Sci. Paris, Ser. I 316, 1187-1191 (1993).

[1045] P. S. Muhly and B. Solel, Hilbert modules over operator algebras, Memoirs Amer. Math. Soc. 559, (1995).

[1046] P. S. Muhly and B. Solel, On the uniqueness of operator algebra structures, Indiana Univ. Math. J. 46, 575-591 (1997).

[1047] P. S. Muhly, A finite dimensional introduction to operator algebra, in: Operator Algebras and Applications, NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, Proceedings of the Aegean Conference on Operator Algebras and Applications, Phytagorio, Samos, Greece, Aug. 19-28, 1996, edited by A. Katavolos (Kluwer Academic Publishers, Dordrecht, 1997), p. 313-354.

[1048] P. S. Muhly and B. Solel, Tensor algebras over C*-correspondences: representations, dilations, and C*-envelopes, J. Funct. Anal. 158, 389-457 (1998).

[1049] P. S. Muhly and B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83, 53-73 (1998).

[1050] P. S. Muhly and B. Solel, An algebraic characterization of boundary representations, in: Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl. 104, Birkhäuser, Basel (1998), p. 189-196.

[1051] P. S. Muhly and B. Solel, Tensor algebras, induced representations, and the Wold decomposition, Can. J. Math. 51, 850-880 (1999).

[1052] P. S. Muhly and B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. (3) 81, 113-168 (2000).

[1053] P. S. Muhly and B. Solel, Corrigendum to ‘On the simplicity of some Cuntz-Pimsner algebras’, Math. Scand. 83(1998), 53-73, Math. Scand. 91, 244-246 (2002).

[1054] P. S. Muhly, Bundles over groupoids, Contemp. Math. 282, 67-82 (2001).

[1055] P. S. Muhly and B. Solel, Quantum Markov processes, Int. J. Math. 13, 863-906 (2002).

[1056] P. S. Muhly and M. Skeide and B. Solel. On product systems of W*-modules and their commutants. 2003. preprint, Università degli Studi del Molise, Dipart. S.E.G. e S., Campobasso, Italy / Techn. Univ. Cottbus, Cottbus, Germany.

[1057] P. S. Muhly and B. Solel, Hardy algebras, W*-correspondences and interpolation theory, Math. Ann. 330, 353-415 (2004).

[1058] P. S. Muhly and M. Tomforde. Topological quivers. 2003. preprint math.OA/0312109 at www.arxiv.org.

[1059] P. S. Muhly and M. Tomforde, Adding tails to C*-correspondences, Documenta Math. 9, 79-106 (2004).

[1060] P. S. Muhly and B. Solel. Duality of W*-correspondences and applications. 2004. preprint math.OA/0404316 at www.arxiv.org.

[1061] P. S. Muhly and B. Solel, Hardy algebras, W*-correspondences and interpolation theory, Math. Ann. 330, 353-415 (2004).

[1062] P. S. Muhly and B. Solel, Hardy algebras associated with W*-correspondences, in: Operator Theory, Systems Theory and Scattering Theory: Multidimensional Generaizations, OT, v. 157 (Birkhäuser, Basel, 2005), p. 221-241.

[1063] P. S. Muhly and M. Skeide and B. Solel, Representations of Ba(E), Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 47-66 (2006).

[1064] P. S. Muhly and D. Pask and M. Tomforde, Strong shift equivalence of C*-correspondences, Israel J. Math. 167, 315-346 (2008).

[1065] G. J. Murphy, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh Math. Soc. II. Ser. 40, 367-374 (1997).

[1066] Qiyuan Na, Some contributions to the theory of operator modules, Ph.D. thesis, University of Iowa, Iowa City, U.S.A. (1995).

[1067] Qiyuan Na, Standard duals of operator bimodules, J. Funct. Anal. 135, 132-156 (1996).

[1068] M. Nagisa and G. Song, Inheritance of the solvability of the similarity problem within a C*-algebra and its C*-subalgebras, Math. Jap. 34, 73-80 (1989).

[1069] G. Nagy, A note on idempotents in finite AW*-factors, Proc. Amer. Math. Soc. 130, 1065-1071 (2002).

[1070] H. Narnhofer, Explicit equivalence bimodules for rotation algebras (Engl.), Zapiski Nauchnych Seminarov Perterburg. Otdel. Mat. Inst. Steklova (POMI) 307, 5538-5546 / Teor. Predst. Din. Sist. Komb. i Algoritm. Metody 10, 175-188 / J. Math. Sci. (N.Y.) 131(2005), 5538-5546 (2005).

[1071] Norio Nawata. Morita equivalent subalgebras of irrational rotation algebras and real quadratic fields. 2008. preprint math.OA/0802.2751 at www.arxiv.org.

[1072] Norio Nawata. C*-algebras associated with real multiplication. 2009. preprint math.OA/0904.1085 at www.arxiv.org.

[1073] M. Neal and B. Russo, Operator space characterizations of C*-algebras and ternary rings, Pacific J. Math. 209, 339-364 (2003).

[1074] M. Neal and É. Ricard and and B. Russo, Classification of contractively complemented Hilbertian operator spaces, J. Funct. Anal. 237, 589-616 (2006).

[1075] V. V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operator Theory 52, 223-249 (2004).

[1076] S. Neshveyev and L. Tuset. Hopf algebra equivariant cyclic cohomology, K-theory and index formulas. 2008. preprint, folk.uio.no.

[1077] R. Nest and R. D. Svegstrup. Classification of connections on higher-dimensional non-commutative tori. 2007. preprint math.OA/0712.1472 at www.arxiv.org.

[1078] Chi-Keung Ng, Coactions and crossed products of Hopf C*-algebras, II: Hilbert C*-modules, Proc. London Math. Soc.(3) 72, 638-656 (1996).

[1079] Chi-Keung Ng, Discrete coactions on Hilbert C*-modules, Math. Proc. Cambridge Philos. Soc. 119, 103-112 (1996).

[1080] Chi-Keung Ng. Coactions on Hilbert C*-modules. 1997. preprint, Mathematical Institute, Oxford University, United Kingdom 1997.

[1081] Chi-Keung Ng, A remark on Mansfield's imprimitivity theorem, Proc. Amer. Math. Soc. 126, 3767-3768 (1998).

[1082] Chi-Keung Ng, Morphisms of multiplicative unitaries, J. Operator Theory 38, 203-224 (1999).

[1083] Chi-Keung Ng, Morita equivalences between fixed point algebras and crossed products, Math. Proc. Camb. Philos. Soc. 125, 43-52 (1999).

[1084] Ping Wong Ng and Narutaka Ozawa, A characterization of completely 1-complemented subspaces of noncommutative L1-spaces, Pacific J. Math. 205, 171-195 (2002).

[1085] Chi-Keung Ng. Regular normed bimodules. 2006. preprint math.OA/0609159 at www.arxiv.org.

[1086] Chi-Keung Ng. On quaternionic functional analysis. 2006. preprint math.OA/0609160 at www.arxiv.org.

[1087] C. P. Niculescu, Converses of Cauchy-Schwarz inequality in the C*-framework, An. Univ. Craiova Ser. Mat. Inform. 26, 22-28 (1999).

[1088] A. Niknam. Best approximation in Hilbert C*-modules. 2002. Int. Congr. of Mathematicians, Section 09, talk on August 27th, Peking, P.R.China.

[1089] A. Niknam and K. Sharifi, The Atkinson theorem in Hilbert C*-modules over C*-algebras of compact operators, Abstract and Applied Analysis 2007, article ID 53060, 7 pages, doi:10.1155/2007/53060 (2007).

[1090] I. Nikolaev, On complex and noncommutative torus, Proc. Amer. Math. Soc. 134, 973-981 (2006).

[1091] I. Nikolaev. On a desingularization of the moduli space of noncommutative tori. 2007. preprint math.OA/0703712 at www.arxiv.org / to appear in Proc. Amer. Math. Soc.

[1092] H. Nishimura, Some connections between Boolean valued analysis and topological reduction theory for C*-algebras, Z. Math. Logik Grundlagen Math. 36, 471-479 (1990).

[1093] H. Nishimura, A Boolean transfer principle from L*-algebras to AL*-algebras, Math. Log. Q. 39, 241-250 (1993).

[1094] H. Obersteller. Morita-Äquivalenz von C*-Algebren (German). ???. manuscript.

[1095] Sei-Qwon Oh and Chun-Gil Park, Linear functional equations in a Hilbert module, Taiwanese J. Math. 7, 441-448 (2003).

[1096] T. Oikhberg, Geometry of operator spaces and products of orthogonal projections, Ph.D. thesis, Texas A&M Univ., College Station, TX, USA (1998).

[1097] T. Oikhberg and G. Pisier, The ”maximal” tensor product of operator spaces, Proc. Edinburgh Math. Soc. 42, 267-284 (1999).

[1098] Rui Okayasu, Cuntz-Krieger-Pimsner algebras associated with amalgamated free products groups (Japanese), in: Free Products in Operator Algebras and Related Topics (Japanese) (Kyoto, 2000), Sūrikaisekikenkyūsho Kōkyūroku 1177 (2000), p. 44-51.

[1099] Rui Okayasu, Cuntz-Krieger-Pimsner algebras associated with amalgamated free product groups, Publ. Res. Inst. Math. Sci. 38, 147--190 (2002).

[1100] D. Olesen, Derivations of AW*-algebras are inner, Pacific J. Math. 53, 555-561 (1974).

[1101] C. L. Olsen and G. K. Pedersen, Corona C*-algebras and their applications to lifting problems, Math. Scand. 64, 63-68 (1989).

[1102] Hiroyuki Osaka, SP-property for a pair of C*-algebras, J. Operator Theory 46, 159-171 (2001).

[1103] Moto O'uchi, On coproducts for transformation group C*-algebras, Far East J. Math. Sci. 2, 139-148 (2000).

[1104] Moto O'uchi, Pseudo-multiplicative unitaries on Hilbert C*-modules, Far East J. Math. Sci. Special Volume: Functional Analysis and its Applications, Part II, 229-249 (2001).

[1105] Moto O'uchi, Pseudo-multiplicative unitaries associated with inclusions of finite-dimensional C*-algebras, Linear Algebra Appl. 341, 201-218 (2002).

[1106] Moto O'uchi, Coring structures and Hilbert C*-modules (Jap.), Sūrikaisekikenkyūsho Kōkyūroku 1291, 84-94, (Recent Aspects of C*-algebras (Jap.), Kyoto, 2002) (2002).

[1107] Moto O'uchi, Coring structures associated with multiplicative unitary operators on Hilbert C*-modules, Far East J. Math. Sci. (FJMS) 11, 121-136 (2003).

[1108] M. Ozawa, Hilbert B(H)-modules and stationary processes, Kodai Math. J. 3, 26-39 (1980).

[1109] M. Ozawa, Boolean valued interpretation of Hilbert space theory, J. Math. Soc. Japan 35, 609-627 (1983).

[1110] M. Ozawa, A classification of type I AW*-algebras and Boolean valued analysis, J. Math. Soc. Japan 36, 589-608 (1984).

[1111] M. Ozawa, A transfer principle from von Neumann algebras to AW*-algebras, J. London Math. Soc. 32, 141-148 (1985).

[1112] M. Ozawa, Nonuniqueness of the cardinality attached to homogeneous AW*-algebras, Proc. Amer. Math. Soc. 93, 681-684 (1985).

[1113] M. Ozawa and K. Saitô, Embeddable AW*-algebras and regular completions, J. London Math. Soc. 34, 511-523, (preprint no.6/85, Nagoya Univ. Japan) (1986).

[1114] M. Ozawa, Boolean valued analysis approach to the trace problem of AW*-algebras, J. London Math. Soc. 33, 347-354 (1986).

[1115] M. Ozawa, Boolean valued interpretation of Banach space theory and module structures of von Neumann algebras, Nagoya Math. J. 117, 1-36, (preprint no.12/85, Nagoya Univ., Japan) (1990).

[1116] J. A. Packer, K-theoretic invariants for C*-algebras associated to transformations and induced flows, J. Funct. Anal. 67, 25-59 (1986).

[1117] J. A. Packer, C*-algebras generated by projective representations of the discrete Heisenberg group, J. Oper. Theory, 41-66 (1987).

[1118] J. A. Packer, Strong Morita equivalence for Heisenberg C*-algebras and the positive cones of their K0-groups, Canad. J. Math. 40, 833-864 (1988).

[1119] J. A. Packer, Flow equivalence for dynamical systems and the corresponding C*-algebras, Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel-Boston, Ma., 223-242 (1988).

[1120] J. A. Packer and I. Raeburn, Twisted crossed products of C*-algebras, I, Math. Proc. Camb. Phil. Soc. 106, 293-311 (1989).

[1121] J. A. Packer and I. Raeburn, Twisted crossed products of C*-algebras, II, Math. Ann. 287, 595-612 (1990).

[1122] J. Packer. Wavelet functions and K-theory. 2001. talk at MSRI Berkeley, CA, USA, April 27.

[1123] J. A. Packer and M. A. Rieffel, Wavelet filter functions, the matrix completion problem, and projective modules over C(Tn), J. Fourier Anal. Appl. 9, 101-106 (2003).

[1124] J. A. Packer and M. A. Rieffel, Projective multi-resolution analysis for L2(R2), J. Fourier Anal. Appl. 10, 439-464 (2004).

[1125] J. A. Packer, Projective multi-resolution analysis for dilations in higher dimensions, J. Operator Theory 57, 147-172 (2007).

[1126] J. A. Packer, A survey of projective multisolution analyses and a projective multiresolution analysis corresponding to the quincunx lattice, in: Representations, Wavelets, and Frames, Appl. Numer. Harmon. Anal. (Birkhäuser Boston, Boston, MA, 2008), p. 239-272.

[1127] Arupkumar Pal, On some quantum groups and their representations, Ph.D. thesis, Indian Statistical Institute, New Delhi, India (1995).

[1128] Arupkumar Pal, Regularity of operators on essential extensions of B0(H), Proc. Amer. Math. Soc. 128, 2649-2657 (2000).

[1129] Arupkumar Pal, Regular operators on Hilbert C*-modules, J. Operator Theory 42, 331-350 (1999).

[1130] M. H. Papatriantafillou, A reduction theorem for Hermitian structures on A-bundles, Bolletino d. Unione Matematica Italiana (7), 8 A, 1-9 (1994).

[1131] Chun-Gil Park, Homogeneous C*-algebras over a sphere, J. Korean Math. Soc. 34, 859-869 (1997).

[1132] Chun-Gil Park, Morita equivalence for noncommutative tori, Bull. Korean Math. Soc. 37, 249-254 (2000).

[1133] Chun-Gil Park, Generalized simple noncommutative tori, Chinese Ann. Math. Ser. B 23, 539-544 (2002).

[1134] Chun-Gil Park, Generalized noncommutative tori, Studia Math. 149, 101-108 (2002).

[1135] Chun-Gil Park, Generalized Jensen's equations in Banach modules over a unital C*-algebra, Southwest J. Pure Appl. Math. no. 2, 52-63 (2002).

[1136] Chun-Gil Park and Won-Gil Park, On the stability of the Jensen' equation in a Hilbert module, Bull. Korean Math. Soc. 40, 53-61 (2003).

[1137] Chun-Gil Park, Stability of linear operators in a Hilbert module, Soochow J. Math. 29, 283-291 (2003).

[1138] Chun-Gil Park, Universal Jensen's equations in Banach modules over a C*-algebra and its unitary group, Acta. Math. Sinica (Engl. Ser.) 20, 1047-1056 (2004).

[1139] E. M. Parker, The Brauer group of graded continuous trace C*-algebras, Trans. Amer. Math. Soc. 308, 115-132 (1988).

[1140] W. L. Paschke, Hilbert B*-modules and completely bounded maps, Ph.D. thesis, University of Oregon, U.S.A. (1972).

[1141] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182, 443-468 (1973).

[1142] W. L. Paschke, The double B-dual of an inner product module over a C*-algebra B, Canad. J. Math. 26, 1272-1280 (1974).

[1143] W. L. Paschke, Inner product modules arising from compact automorphism groups of a von Neumann algebra, Trans. Amer. Math. Soc. 224, 87-102 (1976).

[1144] W. L. Paschke, Integrable group actions on von Neumann algebras, Math. Scand. 40, 234-248 (1977).

[1145] W. L. Paschke, Z2-equivariant K-theory, Lecture Notes Math. 1132, Springer-Verlag, Berlin, pp. 362-373 (1985).

[1146] J. Paseka, Hilbert Q-modules and nuclear ideals, in: Proceedings of the Eight Conference on Category Theory and Computer Science (Electronic Notes in Computer Science 24, 1999), p. 319-338.

[1147] J. Paseka, Hermitian kernels, Hilbert Q-modules and Ando dilation, in: Contributions to General Algebra, 12 (Vienna, 1999) (Heyn-Verlag, Klagenfurt , 2000), p. 317-335.

[1148] J. Paseka, Interior tensor product of Hilbert modules, in: Contributions to General Algebra, v. 13 (Velké Karlovice, 1999 / Dresden, 2000) (Heyn-Verlag, Klagenfurt, 2001), p. 253-263.

[1149] J. Paseka, Multiplier algebras of involutive quantales, in: Contributions to general algebra no. 14, Heyn, Klagenfurt (2004), p. 103-118.

[1150] J. Paseka, Morita equivalence in the context of Hilbert modules, in: Proc. Ninth Prague Topological Symp. (Prague, 2001) (2002), p. 223-251.

[1151] J. Paseka. Rieffel induction in the context of Hilbert modules. 2001. preprint, Masaryk University Brno, Czech Rep.

[1152] D. Pask and I. Raeburn, Symmetric imprimitivity theorems for graph C*-algebras, Internat. J. Math. 12, 609-623 (2001).

[1153] D. Pask and Seung-Jai Rho, Some intrinsic properties of simple graph C*-algebras, in: Operator algebras and mathematical physics (Constanţa, 2001), Theta, Bucharest (2003), p. 325-340.

[1154] D. Pask and A. Rennie and A. Sims. The noncommutative geometry of k-graph C*-algebras. 2005. preprint math.OA/0512438 at www.arxiv.org, to appear in K-Theory.

[1155] D. Pask and A. Rennie, The noncommutative geometry of graph C*-algebras. I. The index theorem, J. Funct. Anal. 233, 92-134 (2006).

[1156] D. Pask and A. Rennie and A. Sims, The noncommutative geometry of k-graph C*-algebras, J. K-Theory 1, 259-304 (2008).

[1157] A. L. T. Paterson, The Forier algebra for locally compact groupoids, Canad. J. Math. 56, 1259-1289 (2004).

[1158] A. L. T. Paterson. The stabilization theorem for proper groupoids. 2009. preprint math.OA/0909.3951 at www.arxiv.org.

[1159] V. I. Paulsen, Completely Bounded Maps and Dilations (Pitman Research Notes in Math., Longman, London, 1986).

[1160] V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73, 258-276 (1987).

[1161] V. I. Paulsen and S. C. Power, Tensor products of operator algebras, Rocky Mountain J. Math. 20, 331-350 (1990).

[1162] V. I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry, J. Funct. Anal. 109, 113-129 (1992).

[1163] V. I. Paulsen, Relative Yoneda cohomology for operator spaces, in: Operator Algebras and Applications, NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, Proceedings of the Aegean Conference on Operator Algebras and Applications, Phytagorio, Samos, Greece, Aug. 19-28, 1996, edited by A. Katavolos (Kluwer Academic Publishers, Dordrecht, 1997), p. 358-393.

[1164] V. I. Paulsen, Resolutions of Hilbert modules, Rocky Mountain J. Math. 27, 271-297 (1997).

[1165] V. I. Paulsen. Equivariant maps and bimodule projections. 2005. preprint math.OA/0510641 at www.arxiv.org.

[1166] A. A. Pavlov, Multiplier algebras and spaces of quasi-multipliers, Vestn. Mosk. Univ. no. 6, 14-18 / Moscow Univ. Math. Bull. 53(1998), no. 6, 13-16 (1999) (1998).

[1167] A. A. Pavlov, The functor N0 over the category of von Neumann algebras and its relation to the operator K-theory (Russ./Engl.), Vestnik Mosc. Univ., Ser. I, Mat. Mekh. no. 4, 55-58 / Moscow Univ. Math. Bull. 55(2000), no. 4, 36-38 (2000).

[1168] A. A. Pavlov, Quasi-multipliers and left multipliers as strict essential extensions of C*-algebras (Russ.), Fundamentalnaya i Prikladnaya Matematika 6, 1141-1154 / Fundamental and Applied Mathematics, Moscow State University, Moscow, Russia (2000).

[1169] A. A. Pavlov, The generalized Chern character and Lefschetz numbers in W*-modules, Acta Appl. Math. 68, 137-157 (2001).

[1170] A. A. Pavlov, Description of a set of homomorphisms from the Hilbert module C0(X,M) to its dual module C0(X,M)' (Russ.), Vestnik Mosc. Univ., Ser. I, Mat. Mekh. no. 3, 63-67 / Moscow Univ. Math. Bull. 57(2002), no. 3, 43-46 (2002).

[1171] A. A. Pavlov, Operator K-theory and functor N0, J. Math. Sciences 123, 4271-4309 (2004).

[1172] A. A. Pavlov and E. V. Troı̋tsky, A C*-analogue of Kazhdan's property (T), Adv. Math. 216, 75-88 (2007).

[1173] J. Pečarić and R. Rajić, The Dunkl-Williams equality in pre-Hilbert C*-modules, Lin. Algebra Appl. 425, 16-25 (2007).

[1174] G. K. Pedersen, Operator algebras with weakly closed abelian subalgebras, Bull. London Math. Soc. 4, 171-175 (1972).

[1175] G. K. Pedersen, Multipliers in AW*-algebras, Math. Z. 187, 23-24 (1984).

[1176] G. K. Pedersen, SAW*-algebras and corona C*-algebras. Contributions to non-commutative topology, J. Operator Theory 15, 15-32 (1986).

[1177] G. K. Pedersen, Three quavers on unitary elements in C*-algebras, Pacific J. Math. 137, 169-179 (1989).

[1178] J. Peetre and R. Rochberg, Higher order Hankel forms, Contemp. Math. 185, 283-306 (1995).

[1179] Vicumpriya S. Perera. Homotopy groups of self-adjoint Fredholm operators in a Hilbert C*-module. 1998. preprint, Univ. of West Alabama, Livingston, USA.

[1180] N. C. Phillips, Equivariant K-theory and freeness of group actions on C*-algebras, Lecture Notes Math. 1274, Springer-Verlag, Berlin (1987).

[1181] N. C. Phillips, Inverse limits of C*-algebras, J. Oper. Theory 19, 159-195 (1988).

[1182] N. C. Phillips, Equivariant K-theory for proper actions and C*-algebras, Contemp. Math. 70, 175-204 (1988).

[1183] N. C. Phillips, Equivariant K-theory for Proper Actions, Pitman Res. Notes Math., v. 178 (Longman, London - New York, 1989).

[1184] N. C. Phillips, Representable K-theory for σ-C*-algebras, K-Theory 3, 441-478 (1989).

[1185] N. C. Phillips and N. Weaver, Modules with norms which take values in a C*-algebra, Pacific J. Math. 185, 163-181 (1998).

[1186] J. Phillips and I. Raeburn, Twisted crossed products by coactions, J. Austral. Math. Soc., Ser. A 56, 320-344 (1994).

[1187] F. Pierrot, Induction parabolique et K-théorie de C*-algèbres maximales, C. R. Acad. Sci. Paris Sér. I Math. 332, 805-808 (2001).

[1188] F. Pierrot, Bimodules de Kasparov non bornés équivariants pour les groupoı̋des topologiques localement compacts, C. R. Acad. Sci. Paris Sér. I Math. 342, 661-663 (2006).

[1189] F. Pierrot, Opérateurs réguliers dans les C*-modules et structure des C*-algèbres de groupes de Lie semisimples complexes simplement convexes, J. Lie Theory 16, 651-689 (2006).

[1190] C. Pinzari, The ideal structure of Cuntz-Krieger-Pimsner algebras and Cuntz-Krieger algebras over infinite matrices, in: Operator Algebras and Quantum Field Theory, Accademia Nazionale dei Lincei, Rome, July 1-6, 1996, edited by S. Doplicher and R. Longo and J. E. Roberts and L. Zsido (International Press, 1997), p. 136-150.

[1191] C. Pinzari and J. E. Roberts. A theory of induction and classification of tensor C*-categories. 2009. preprint math.OA/0907.2459 at www.arxiv.org.

[1192] G. Pisier, Completely bounded maps between sets of Banach space operators, Indiana Univ. Math. J. 39, 249-277 (1990).

[1193] G. Pisier, Espaces de Banach quantiques: une introduction à la théorie des espaces d'operateurs, in: Espaces de Banach classiques et quantiques, SMF Journ. Annu., 1994, Soc. Math. France, 59 pp (1994).

[1194] G. Pisier, Regular operators between non-commutative Lp-spaces, Bull. Sci. Math. 119, 95-118 (1995).

[1195] G. Pisier, Exact operator spaces, in: Recent advances in operator algebras (Orléans, 1992), Astérisque 232 (1995), p. 159-186.

[1196] G. Pisier, Similarity problems and completely bounded maps, Lect. Notes Math. 1618, (1996).

[1197] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585, (1996).

[1198] G. Pisier, Espaces d'opérateurs: une nouvelle dualité, Seminaire Bourbaki, 48ème année 1995-1996 no. 814, (1996).

[1199] G. Pisier, Non-commutative vector-valued Lp-spaces and completely p-summing maps, Astérisque 247, (1998).

[1200] G. Pisier, The similarity degree of an operator algebra (russ./engl.), Algebra i Analiz 10, no. 1, 132-186 / St. Petersburg Math. J. 10(1999), no. 1, 103-146 (1998).

[1201] G. Pisier, An introduction to the theory of operator spaces, London Mathematical Society Lecture Note Series 294 (Cambridge University Press, Cambridge, 2003).

[1202] M. V. Pimsner and D. Voiculescu, Exact sequences for K-groups and EXT-groups of certain crossed product C*-algebras, J. Oper. Theory 4, 201-210 (1980).

[1203] M. V. Pimsner, Range of traces on K0 of reduced crossed products by free groups, Lecture Notes Math. 1132, Springer-Verlag, Berlin, pp. 374-408 (1985).

[1204] M. V. Pimsner and S. Popa, Entropy and index for subfactors, Ann. scient. Éc. Norm. Sup. 4e série 19, 57-106 (1986).

[1205] M. V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in: Free Probability Theory (Waterloo, ON, 1995), Fields Institute Communications, vol. 12, edited by D.-V. Voiculescu (1997), p. 189-212.

[1206] J. Pincket, Hilbert modules over an arbitrary C*-algebra, Bull. Soc. Math. Belg., Sér. B 38, 176-186 (1986).

[1207] R. J. Plymen, Strong Morita equivalence, spinors and symplectic spinors, J. Oper. Theory 16, 305-324 (1986).

[1208] R. J. Plymen, The reduced C*-algebra of the p-adic group GL(n), J. Func. Anal. 72, 1-12 (1987).

[1209] R. J. Plymen, Equivalence bimodules in the representation theory of reductive groups, Proc. Symp. Pure Math. 51-1, 267-272 (1990).

[1210] Y.-T. Poon and Z.-J. Ruan, Operator algebras with contractive approximate identities, Canad. J. Math. 46, 397-414 (1994).

[1211] M. Popa. A combinatorical approach to monotonic independence over a C*-algebra. 2006. preprint math.FA/0612570 at www.arxiv.org.

[1212] G. Popescu, Universal operator algebras associated to contractive sequences of noncommuting operators, J. London Math. Soc. 58, 469-479 (1998).

[1213] G. Popescu. Operator theory on noncommutative varieties. 2005. preprint math.OA/0507158 at www.arxiv.org.

[1214] G. Popescu. Operator theory on noncommutative varieties II. 2005. preprint math.OA/0509242 at www.arxiv.org.

[1215] P. S. Popov, A topological criterion for the almost orthocomplementability of any functional on l2(C(X)) (Russ./Engl.), Mat. Zametki 65, 636-640 / Math. Notes 65(1999), 532-536 (1999).

[1216] D. Popovici. Self-dual Hilbert C*-modules in prediction theory. 1996. S.L.O.H.A., West University of Timişoara, to appear.

[1217] D. Popovici, Minimal unitary dilations of contractions on Hilbert C*-modules, S.L.O.H.A., West University of Timişoara 3, (1996).

[1218] D. Popovici, Self-dual Hilbert C*-modules and stationary processes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40, 107-119 (1997).

[1219] D. Popovici, On the geometric structure of minimal dilations on Hilbert C*-modules, Zeitschr. Anal. Anwendungen 17, 379-392 (1998).

[1220] D. Popovici, Orthogonal decompositions of isometries in Hilbert C*-modules, J. Operator Theory 39, 99-112 (1998).

[1221] D. Popovici, Orthogonal decompositions in Hilbert C*-modules and stationary processes, Acta Math. Univ. Comenianae 67, 217-230 (1998).

[1222] A. Popovici and D. Popovici. Symmetric operators on Hilbert C*-modules. 2000. preprint, Dept. Math., University of the West Timişoara, Timişoara, Romania.

[1223] M. Putinar, On the rigidity of Bergman submodules, Amer. J. Math. 116, 1421-1432 (1994).

[1224] I. F. Putnam, Strong Morita equivalence of Denjoy C*-algebras, C. R. Math. Rep. Acad. Sci. Canada 7, 121-125 (1985).

[1225] I. F. Putnam and K. Schmidt and C. Skau, C*-algebras associated with Denjoy homeomorphisms of the circle, J. Oper. Theory 16, 99-126 (1986).

[1226] I. F. Putnam, Strong Morita equivalence for the Denjoy C*-algebras, Can. Math. Bull. 31, 439-447 (1988).

[1227] J. C. Quigg and J. Spielberg, Regularity and hyporegularity in C*-dynamical systems, Houston Math. J. 18, 139-152 (1992).

[1228] J. C. Quigg, Full and reduced C*-coactions, Math. Proc. Camb. Phil. Soc. 116, 435-450 (1995).

[1229] J. Quigg. A categorical approach to imprimitivity theorems for dynamical systems. 2002. preprint math.OA/0205322 at www.arxiv.org.

[1230] J. Quigg, Bundles of C*-correspondences over directed graphs and a theorem by Ionescu, Proc. Amer. Math. Soc. 134, 1677-1679 (2006).

[1231] I. Raeburn, On the Picard group of a continuous trace C*-algebra, Trans. Amer. Math. Soc. 263, 183-205 (1981).

[1232] I. Raeburn and D. P. Williams, Pull-backs of C*-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 287, 755-777 (1985).

[1233] I. Raeburn, Induced C*-algebras and a symmetric imprimitivity theorem, Math. Ann. 280, 369-387 (1988).

[1234] I. Raeburn and A. M. Sinclair and D. P. Williams, Equivariant completely bounded operators, Pacific J. Math. 139, 155-194 (1989).

[1235] I. Raeburn. Induced C* -algebras and a symmetric imprimitivity theorem. 1995. preprint, Sch. Math., Univ. NSW, Kensington, NSW 2033, Aust., to appear in Math. Ann.

[1236] I. Raeburn and D. P. Williams, Dixmier-Douady classes of dynamical systems and crossed products, Can. J. Math. 45, 1032-1066 (1993).

[1237] I. Raeburn and D. P. Williams, Morita equivalence and continuous trace C*-algebras, Math. Surveys and Monogr. v. 60 (Amer. Math. Soc., Providence, R.I., 1998).

[1238] I. Raeburn. The ideal structure of the C*-algebras of infinite graphs. 2001. math.OA/0109142 at www.arxiv.org.

[1239] I. Raeburn and S. J. Thompson, Countably generated Hilbert modules, the Kasparov stabilization theorem, and frames in Hilbert modules, Proc. Amer. Math. Soc. 131, 1557-1564 (2003).

[1240] I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, no. 103 (Amer. Math. Soc., Providence, R.I., 2005).

[1241] I. Raeburn and A. Sims, Product systems of graphs and the Toeplitz algebras of higher-rank graphs, J. Operator Theory 53, 399-429 (2005).

[1242] R. Rajić, On the algebra range of an operator on a Hilbert C*-module over compact operators, Proc. Amer. Math. Soc. 131, 3043-3051 (2003).

[1243] B. Ramazan. Fell bundles associated to groupoid morphisms. 2006. preprint math.OA/0612746 at www.arxiv.org.

[1244] O. Ramcke, Nichtkommutative Lp,2-Räume und Hilbertmoduln, Master thesis, Universität Kiel, Kiel, Fed. Rep. Germany (2000).

[1245] J. Raven, An equivariant bivariant Chern character, Ph.D. thesis, The Pennsylvania State University, The Graduate School, Dept. Math., University Park, PA, U.S.A. (2004).

[1246] A. Razon and L. P. Horwitz and L. C. Biedenharn, On a basic theorem of quaternionic modules, J. Math. Phys. 30, 59 (1989).

[1247] A. Razon and L. P. Horwitz, Tensor products of quaternion Hilbert modules, Acta Appl. Math. 24, 141-178 (1991).

[1248] A. Razon and L. P. Horwitz, Projection operators and states in the tensor product of quaternion Hilbert modules, Acta Appl. Math. 24, 179-194 (1991).

[1249] A. Razon and L. P. Horwitz, Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules, J. Math. Phys. 33, 3098-3104 (1992).

[1250] H. Reich, Group von Neumann algebras and related algebras, Ph.D. thesis, Universität Göttingen, Göttingen, Germany (1998).

[1251] J. Renault, Représentationsdes produitscroisés d'algèbres de gropoı̋des, J. Operator Theory 18, 67-97 (1987).

[1252] J. Renault, Cuntz-like algebras, in: Operator Theoretical Methods (Timişoara, 1998), Theta Found., Bucharest (2000), p. 371-386.

[1253] A. Rennie and J. C. Várilly. Reconstruction of manifolds in noncommutative geometry. 2006. preprint math.OA/0610418 at www.arxiv.org.

[1254] S. A. Reznikoff, Temperley-Lieb planar algebra modules arising from the ADE planar algebra, J. Funct. Anal. 228, 445-468 (2005).

[1255] M. A. Rieffel, Induced representations of C*-algebras, Bull. Amer. Math. Soc. 78, 606-609 (1972).

[1256] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Applied Alg. 5, 51-96 (1974).

[1257] M. A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13, 176-257 (1974).

[1258] M. A. Rieffel, Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann. 222, 7-22 (1976).

[1259] M. A. Rieffel, Unitary representations of group extensions: an algebraic approach to the theory of Mackey and Blattner, Studies in Analysis, Advances in Mathematics Supplementary Studies 4, 43-82 (1979).

[1260] M. A. Rieffel, C*-algebras associated with irrational rotations, Pac. J. Math. 93, 415-429 (1981).

[1261] M. A. Rieffel, Morita equivalence for operator algebras, Proc. Symp. Pure Math. Amer. Math. Soc. 38:1, 285-298 (1982).

[1262] M. A. Rieffel, Applications of strong Morita equivalence to transformation group C*-algebras, Proc. Symp. Pure Math. Amer. Math. Soc. 38:1, 299-310 (1982).

[1263] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 47, 285-302 (1983).

[1264] M. A. Rieffel, The cancellation theorem for projective modules over irrational rotation algebras, Proc. London Math. Soc. (3) 47, 285-302 (1983).

[1265] M. A. Rieffel, ”Vector bundles” over higher dimensional non-commutative tori, Lecture Notes Math. 1132, Springer-Verlag, Berlin, pp. 456-467 (1985).

[1266] M. A. Rieffel, Non-stable K-theory and non-commutative tori, Contemp. Math. 62, 267-279 (1987).

[1267] M. A. Rieffel, The homotopy groups of the unitary groups of non-commutative tori, J. Oper. Theory 17, 237-254 (1987).

[1268] M. A. Rieffel, Projective modules over higher-dimensional non-commutative tori, Canad. J. Math. 40, 257-338 (1988).

[1269] M. A. Rieffel, Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemp. Math. 105, 191-211 (1988).

[1270] M. A. Rieffel, Critical points of Yang-Mills for non-commutative tori, J. Differential Geom. 31, 535-546 (1990).

[1271] M. A. Rieffel, Proper Actions of Groups on C*-algebras, in: , PM v.84 (Mappings of Operator Algebras, ed.: H. Araki, R. V. Kadison, Birkhäuser-Verlag, Boston- Basel - Berlin, 1991), p. 141-182.

[1272] M. A. Rieffel, Deformation quantization for actions of Rd, Memoirs Amer. Math. Soc. 506, (1993).

[1273] M. A. Rieffel, K-groups of C*-algebras deformed by actions of Rd, J. Funct. Anal. 116, 199-214 (1993).

[1274] M. A. Rieffel. Multiwavelets and operator algebras. 1997. Talk given at AMS Special Session.

[1275] M. A. Rieffel and A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math. 10, 289-299 (1999).

[1276] M. A. Rieffel. Vector bundles and Gromov-Hausdorff distance. 2006. preprint math.MG/0608266 at www.arxiv.org.

[1277] M. A. Rieffel. A global view of equivariant vector bundles and Dirac operators on some compact homogeneous spaces. 2007. preprint math.MG/0703496 at www.arxiv.org.

[1278] L. Robert. The Cuntz semigroup of some spaces of at most 2. 2007. preprint math.OA/0711.4396 at www.arxiv.org.

[1279] J. Roe, Comparing analytic assembly maps, Q. J. Math. 53, 241-248 (2002).

[1280] M. Rosenberg, The square-integrability of matrix-valued functions with respect to a non-negative hermitian measure, Duke Math. J. 31, 291-298 (1964).

[1281] J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov conjecture, Publ. Math. I.H.E.S. 58, 197-212 (1983).

[1282] J. Rosenberg, K-theory of group C*-algebras, foliation C*-algebras and crossed products, Contemp. Math. 70, 251-301 (1988).

[1283] J. Rosenberg, K and KK: Topology and operator algebras, Proc. Symp. Pure Math. 51-1, 445-480 (1990).

[1284] J. Roydor, Subalgebras of C(Ω,Mn) and their modules, Illinois J. Math. 49, 1019-1038 (2005).

[1285] K. Røysland. Symmetries in projective multiresolution analysis. 2007. preprint math.FA/0709.4122 at www.arxiv.org.

[1286] Zhong-Jin Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76, 217-230 (1988).

[1287] Zhong-Jin Ruan, Injectivity of operator spaces, Trans. Amer. Math. Soc. 315, 89-104 (1989).

[1288] Zhong-Jin Ruan, The operator amenability of A(G), Amer. J. Math. 117, 1449-1474 (1995).

[1289] Zhong-Jin Ruan, Matrix regular operator spaces, J. Funct. Anal. 152, 136-175 (1998).

[1290] Zhong-Jin Ruan and Guangwu Xu, Splitting properties of operator bimodules and operator amenability of Kac algebras, in: Operator Theory, Operator Algebras and Related Topics (Timişoara, 1996), Theta Found., Bucharest (1997), p. 193-216.

[1291] Zhong-Jin Ruan, Type decomposition and the rectangular AFD property for W*-TRO's, Canad. J. Math. 56, 843-870 (2002).

[1292] K. Saitô, On the embedding as a double commutant in a type I AW*-algebra, I, Tôhoku Math. J. 23, 541-557 (1971).

[1293] K. Saitô, On the embedding as a double commutant in a type I AW*-algebra, II, Tôhoku Math. J. 26, 333-339 (1974).

[1294] K. Saitô, AW*-algebras with monotone convergence property and type III, non-W*, AW*-factors, Lect. Notes Math. 650, 131-134 (1978).

[1295] K. Saitô, AW*-algebras with monotone convergence property and examples by Takenouchi and Dyer, Tôhoku Math. J. 31, 31-40 (1979).

[1296] K. Saitô, A structure theory in the regular σ-completion of C*-algebras, J. London Math. Soc. 22, 549-558 (1980).

[1297] K. Saitô, On normal AW*-algebras, Tôhoku Math. J. 81, 567-572 (1981).

[1298] K. Saitô, A structure theory in the regular monotone completion of C*-algebras, Proc. Symp. Pure Math. Amer. Math. Soc., part 2 38, 601-603 (1982).

[1299] K. Saitô and J. D. M. Wright, Outer automorphisms of regular completions, J. London Math. Soc. 27, 150-156 (1983).

[1300] K. Saitô and J. D. M. Wright, Outer automorphisms of injective C*-algebras, Math. Scand. 54, 40-50 (1984).

[1301] K. Saitô and J. D. M. Wright, On tensor products of monotone complete algebras, Quart. J. Math. Oxford (2), 32, 371-381 (1984).

[1302] K. Saitô, Representations of C*-algebras and regular completions, J. London Math. Soc. 40, 291-304 (1989).

[1303] K. Saitô and J. D. M. Wright, Normal AW*-algebras, in: , Progr. Math. v.84 (Mappings in Operator Algebras, ed.: H. Araki, R. V. Kadison, Birkhäuser-Verlag, Boston - Basel - Berlin , 1991), p. 305-307.

[1304] K. Saitô and J. D. M. Wright, All AW*-factors are normal, J. London Math. Soc. (2) 44, 143-154 (1991).

[1305] K. Saitô, Embedding regular completions of C*-algebras as C*-subalgebras in their second dual, J. London Math. Soc. 45, 145-152 (1992).

[1306] K. Saitô, On C*-algebras with countable order dense sets and tensor products of monotone complete C*-algebras, Quart. J. Math. Oxford 43, 349-360 (1992).

[1307] K. Saitô and J. D. M. Wright, Dynamic actions on monotone complete factors, Quart. J. Math. Oxford (2), 44, no. 174, 239-247 (1993).

[1308] K. Saitô and J. D. M. Wright, A continuum of discrete group actions on a fermionic factor, Quart. J. Math. Oxford (2), 44, no. 175, 339-343 (1993).

[1309] K. Saitô, Wild, type III, monotone complete, simple C*-algebras indexed by cardinal numbers, J. London Math. Soc.(2) 49, 543-554 (1994).

[1310] K. Saitô, On σ-normal C*-algebras, Bull. London Math. Soc. 29, 480-482 (1997).

[1311] K. Saitô and J. D. M. Wright, Dynamic systems and duality for monotone complete C*-algebras, Q. J. Math., Oxford II. Ser. 49, no. 194, 199-226 (1998).

[1312] H. Salehi, The prediction theory of multivariate stochastic processes with continuous time, Ph.D. thesis, Indiana Univ., Bloomington, U.S.A. (1965).

[1313] H. Salehi, A factorization algorithm for q×q matrix-valued functions on the real line R, Trans. Amer. Math. Soc. 124, 468-470 (1966).

[1314] H. Salehi, On the growth of a q-variate stationary stochastic process, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 8, 140-147 (1967).

[1315] N. Salinas, Products of kernel functions and module tensor products, in: Topics in Operator Theory, Oper. Theory: Adv. Appl., vol. 32, edited by Birkhäuser, Basel-Boston, MA (1988), p. 219-241.

[1316] Usa Sasaki, Lattices of projections in AW*-algebras, J. Sc. Hiroshima Univ., Ser. A 19, 1-30 (1955).

[1317] J.-L. Sauvageot, Tangent bimodule and locality for dissipative operators on C*-algebras, Lecture Notes Math. 1396, Springer-Verlag, Berlin, 322-338 (1989).

[1318] Y. Savchuk and K. Schmüdgen. Unbounded induced representations of *-algebras. 2008. preprint math.RT/0806.2428 at www.arxiv.org.

[1319] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35, 191-197 (1968).

[1320] P. P. Saworotnow, Representation of a topological group on a Hilbert module, Duke Math. J. 37, 145-150 (1970).

[1321] P. P. Saworotnow, A characterization of Hilbert modules, Bull. Calcutta Math. Soc. 68, 39-41 (1976).

[1322] P. P. Saworotnow, Linear spaces with an H*-algebra-valued inner product, Trans. Amer. Math. Soc, 262, 543-549 (1980).

[1323] P. P. Saworotnow, Irreducible representations of a Banach algebra on a Hilbert module, Houston J. Math. 7, 275-281 (1981).

[1324] P. P. Saworotnow, Errata to: Linear spaces with an H*-algebra-valued inner product, Trans. Amer. Math. Soc, 270, 349 (1982).

[1325] P. P. Saworotnow, Generalized positive definite functions and stationary processes, in: Prediction Theory and Harmonic Analysis, The Pesi Masani volume, edited by V. Mandrekar and H. Salehi (North-Holland Publishing Comp., Amsterdam, 1983), p. 329-344.

[1326] P. P. Saworotnow, Diagonalization of a self-adjoint operator acting on a Hilbert module, Int. J. Math. Math. Sci. 8, 669-675 (1985).

[1327] P. P. Saworotnow, Diagonalization of unbounded self-adjoint operators acting on a Hilbert module, Glas. Mat., III. Series 26(46), 89-95 (1991).

[1328] P. P. Saworotnow, Hilbert Algebras and Hilbert modules, in: Inner Product Spaces and Applications, Pitman Res. Notes Math. Ser., 376 (Longman, Harlow, 1997), p. 241-260.

[1329] A. Scedrow and P. Scowcroft, Decomposition of finitely generated modules over C(X): sheaf semantics and a decision procedure, Math. Proc. Cambridge Philos. Soc. 103, 257-268 (1988).

[1330] Th. Schick, Analysis on ∂-manifolds of bounded geometry, Hodge-de Rham isomorphism and L2-index, Ph.D. thesis, Johannes Gutenberg Universität Mainz, Mainz, F.R.G. (1996).

[1331] Th. Schick, Integrality of L2-Betti numbers, Math. Ann. 317, 727-750 (2000).

[1332] Th. Schick, L2-determinant class and approximation of L2-Betti numbers, Trans. Amer. Math. Soc. 353, 3247-3265 (2001).

[1333] Th. Schick, L2-index theorems for elliptic differential boundary operators, Pacific J. Math. 197, 423-439 (2001).

[1334] Th. Schick, The trace on the K-theory of group C*-algebras, Duke Math. J. 107, 1-14 (2000).

[1335] Th. Schick. Modern index theory - lectures held at CIRM recontré ”Theorie de indice”, March 2006. 2006. www.uni-math.gwdg.de, homepage of the author.

[1336] K. Schmüdgen. Noncommutative algebraic geometry - some basic concepts and first ideas. 2007. preprint math.OA/0709.317 at www.arxiv.org.

[1337] C. Schochet, Equivariant KK-theory for inverse limits of G-C*-algebras, J. Austral. Math. Soc. (Series A) 56, 183-211 (1994).

[1338] H. Schröder, K-theory for Real C*-algebras and Applications, Pitman Res. Notes in Math. Sci., vol. 290 (Longman Scientific & Technical, Harlow, England, 1993).

[1339] F. P. Schuller and P. Vogt, Product structure of heat phase space and branching Brownian motion, Annals Phys. 308, 528-554 (2003).

[1340] A. Schwarz. Noncommutative instantons: a new approach. 2001/2005. hep-th/0102182 at www.arxiv.org.

[1341] J. Schweizer, Interplay between noncommutative topology and operators on C*-algebras, Ph.D. thesis, Eberhard-Karls-Universität Tübingen, Mathematische Fakultät (1996). 104 pp.

[1342] J. Schweizer, A description of Hilbert C*-modules in which all closed submodules are orthogonally closed, Proc. Amer. Math. Soc. 127, 2123-2125 (1999).

[1343] J. Schweizer. Characterizing the simplicity of Cuntz-Pimsner algebras. 1999. preprint, Eberhard-Karls-Universität Tübingen, Mathematische Fakultät, Tübingen, F.R.G.

[1344] J. Schweizer. Crossed products by C*-correspondences and Cuntz-Pimsner algebras. 1999. preprint 83, Preprintreihe SFB 478 - Geometrische Strukturen in der Mathematik, Mathematisches Institut, Westfälische Wilhelms-Universität Münster, F. R. Germany.

[1345] J. Schweizer, Crossed products by C*-correspondences and Cuntz-Pimsner algebras, in: C*-Algebras: Proceedings of the SFB-Workshop on C*-Algebras, Münster, Germany, March 8-12, 1999, edited by J. Cuntz and S. Echterhoff (Springer, Berlin - Heidelberg, 2000), p. 203-226.

[1346] J. Schweizer. Crossed products by equivalence bimodules. 2000. preprint, SFB 478 - Geometrische Strukturen in der Mathematik, Mathematisches Institut, Westfälische Wilhelms-Universität Münster, F. R. Germany.

[1347] J. Schweizer, Dilations of C*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180, 404-425 (2001).

[1348] J. Schweizer, Hilbert C*-modules with a predual, J. Operator Theory 48, 621-632 (2002).

[1349] D. K. Sen, On operators on Hilbert spaces over H*-algebras, An. Stiint. Univ. ”Al. I. Cuza” Iasi, N. Ser., Sect. Ia 28, no. 2, 29-33 (1982).

[1350] V. Seregin, Uniformly bounded orbits and C*-reflexivity (Russ./Engl.), Vestnik Mosk. Univ. Ser. I Mat.-Mekh. no. 1, 40-45 / Moscow Univ. Math. Bull. 58(2003), no. 1, 44-48 (2003).

[1351] J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire Dubreil-Pisot: algèbre et théorie des nombres 11, 531-543 (1957-58).

[1352] K. Sharifi, Unbounded Operators on Hilbert C*-modules and the Magajna-Schweizer Theorem, Ph.D. thesis, Ferdowsi University, Mashhad, Iran (January 2008).

[1353] K. Sharifi. Descriptions of partial isometries on Hilbert C*-modules. July 2008. preprint, Shahrood Univ. of Technol., Shahrood, Iran.

[1354] K. Sharifi. Continuity of the polar decomposition for unbounded operators on Hilbert C*-modules. Nov. 2008. preprint, Shahrood Univ. of Technol., Shahrood, Iran.

[1355] K. Sharifi. The gap between unbounded regular operators. 2009. preprint math.OA/0901.1891 at www.arxiv.org / accepted by J. Operator Theory.

[1356] K. Sharifi. Descriptions of partial isometries on Hilbert C*-modules. Lin. Algebra Appl. 431. 2009. 883-887.

[1357] F. Sharipov, Independence of the spectrum of an elliptic operator over a C*-algebra (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 1, 87-89 / Moscow Univ. Math. Bull. 40(1985), no. 1, 96-99 (1985).

[1358] F. Sharipov, Representation of the C*-algebra EndA*(l2(A)) (russ.), in: Problems in Mathematical Analysis and its Applications (Gos. Univ. Samarkand, USSR, 1985), p. pp. 89-93.

[1359] F. Sharipov and Yu. I. Zhuraev, On the index of a Fredholm operator in a Hilbert C*-module (russ.), in: Problems in Mathematical Analysis and its Applications (Gos. Univ. Samarkand, USSR, 1986), p. pp. 37-41.

[1360] F. Sharipov and Yu. I. Zhuraev, Index of elliptic operators over a C*-algebra (russ.), in: Problems in Multidimensional Differential Geometry and its Applications (Gos. Univ. Samarkand, USSR, 1988), p. pp. 47-52.

[1361] F. Sharipov and Yu. I. Zhuraev. Hilbert modules over locally C*-algebras. 2000. preprint, Samarkand State Univ. / preprint math.OA/0011053 at www.arxiv.org.

[1362] C. S. Sharma and T. J. Coulson, Spectral theory for unitary operators on a quaternionic Hilbert space, J. Math. Phys. 28, 1941-1945 (1987).

[1363] Shen, Nien-Tsu, Embeddings of Hilbert bimodules, Ph.D. thesis, Purdue University, West Lafayette, USA (1982).

[1364] D. Sherman, The application of modular algebras to relative tensor products and noncommutative Lp modules, Ph.D. thesis, Univ. of California at Los Angeles, U.S.A. (2001).

[1365] D. Sherman, Relative tensor products for modules over von Neumann algebras, in: Function Spaces (Edwardsville, IL, 2002), Contemp. Math. 328, Amer. Math. Soc., Providence, RI (2003), p. 275-291.

[1366] A. J. L. Sheu, Classification for projective modules over the unitized group C*-algebras for certain solvable Lie-groups, J. Oper. Theory 18, 33-40 (1987).

[1367] A. J. L. Sheu, A cancellation theorem for modules over the group C*-algebras of certain nilpotent Lie groups, Canad. J. Math. 39, 365-427 (1987).

[1368] D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500, 191-212 (1998).

[1369] D. Shlyakhtenko, A-valued semicircular systems, J. Funct. Anal. 166, 1-47 (1999).

[1370] M. A. Shubin, De Rham theorem for extended L2-cohomology, in: Voronezh Winter Math. School, Amer. Math. Soc. Transl. Ser. 2, vol. 184 (Amer. Math. Soc., Providence, R.I., 1998), p. 217-231.

[1371] N. Sieben, Morita equivalence of C*-crossed products by inverse semigroup actions and partial actions, Rocky Mountain J. Math. 31, 661-686 (2001).

[1372] A. Sims and I. Raeburn. Product systems of graphs and the Toeplitz algebras of higher-rank graphs. 2003. preprint math.OA/0305371 at www.arxiv.org.

[1373] A. Sims and T. Yeend. Cuntz-Nica-Pimsner algebras associated to product systems of Hilbert bimodules. 2007. preprint math.OA/0712.3073 at www.arxiv.org / to appear in J. Operator Theory.

[1374] A. M. Sinclair and R. R. Smith, Factorization of completely bounded bilinear operators and injectivity, J. Funct. Anal. 157, 62-87 (1998).

[1375] K. B. Sinha and D. Goswami, Quantum Stochastic Calculus and Noncommutative Geometry, Cambridge Tracts in Math., v. 69 (Cambridge University Press, 2007).

[1376] A. Skalski and J. Zacharias. On approximation properties of Pimsner algebras and crossed products by Hilbert bimodules. 2006. preprint math.OA/0607628 at www.arxiv.org.

[1377] A. Skalski and J. Zacharias, Wold decomposition for representations of product systems of C*-correspondences, Int. J. Math. 19, 455-479 (2008).

[1378] A. Skalski. On isometric dilations of product systems of C*-correspondences and applications to families of contractions associated to higher-rank graphs. 2008. preprint math.OA/0809.4348 at www.arxiv.org / to appear in Indiana University Mathematics Journal.

[1379] G. Skandalis, Some remarks on Kasparov's theory, J. Func. Anal. 56, 337-347 (1984).

[1380] G. Skandalis, Une notion de nucleárité en K-théorie (d'après J. Cuntz), K-theory 1, 549-573 (1988).

[1381] G. Skandalis, Kasparov's bivariant K-theory and applications, Expo. Math. 9, 193-250 (1991).

[1382] G. Skandalis, Operator algebras and duality, in: Proc. Int. Congress of Mathematicians, Kyoto (1994).

[1383] M. Skeide, Hilbert modules in quantum electrodynamics and quantum probability, Comm. Math. Phys. 192, 569-604 (1998).

[1384] M. Skeide, A central limit theorem for Bose Z-independent quantum random variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 289-299 (1999).

[1385] M. Skeide, Quantum stochastic calculus on full Fock modules, J. Funct. Anal. 173, 401-452 (2000).

[1386] M. Skeide. Hilbert Modules in Quantum Probability and Physics. 2000. Lecture Notes of a course held at Centro Vito Volterra, Univ. Roma Tor Vergata.

[1387] M. Skeide, Generalized matrix C*-algebras and representations of Hilbert modules, Math. Proc. Royal Irish Acad. 100A, 11-38 (2000).

[1388] M. Skeide. Hilbert Modules and Applications in Quantum Probability. 2001. preprint of a book, 360 pp., Brandenburgische Technische Universität Cottbus, Lehrstuhl für Wahrscheinlichkeitstheorie und Statistik, Cottbus, Germany.

[1389] M. Skeide. Tensor product systems of Hilbert modules. 2001. Habilitation Thesis, Brandenburgische Technische Universität Cottbus, Lehrstuhl für Wahrscheinlichkeitstheorie und Statistik, Cottbus, Germany.

[1390] M. Skeide, Dilations, product systems and weak dilations, Mat. Zametki 71, no. 6, 914-923 / Math. Notes 71(2002), no. 5-6, 836-843 (2002).

[1391] M. Skeide, Dilations, product systems and weak dilations (Russ./Engl.), Mat. Zametki 71, 914-923 / Math. Notes 71(2002), 836-843 (2002).

[1392] M. Skeide, Commutants of von Neumann modules, representations of Ba(E) other topics related to product systems of Hilbert modules, in: Advances in Quantum Dynamics, Amer. Math. Soc., Providence, R.I., Contemp. Math. 335 (2003), p. 253-262.

[1393] M. Skeide, A note on Bose Z-independent random variables fulfilling q-commutative relations, in: Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP-PQ: Quantum Probability White Noise Anal. 15 (World Sci. Publishing, River Edge, NJ, USA, 2003), p. 205-214.

[1394] M. Skeide, Dilation theory and continuous tensor product systems of Hilbert modules, in: Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP-PQ: Quantum Probability White Noise Anal. 15 (World Sci. Publishing, River Edge, NJ, USA, 2003), p. 215-242.

[1395] M. Skeide, Von Neumann modules, intertwiners and self-duality, J. Operator Theory 54, 119-124 (2005).

[1396] M. Skeide, Lévy processes and tensor product systems of Hilbert modules, in: Quantum probability and infinite dimensional analysis, QP-PQ: Quantum Probab. White Noise Analysis, 18 (World Sci. Publ., Hackensack, NJ, U.S.A., 2005), p. 492-503.

[1397] M. Skeide, Three ways to representations of BA(E), in: Quantum Probability and Infinite Dimensional Analysis, QP-PQ: Quantum Probab. White Noise Anal., 18 (World Sci. Publ., Hackensack, NJ, U.S.A., 2005), p. 504-517.

[1398] M. Skeide. Generalized unitaries and the Picard group. 2005. preprint math.OA/051661 at www.arxiv.org.

[1399] M. Skeide, Commutants of von Neumann correspondences and duality of Eilenberg-Watts theorems by Rieffel and by Blecher, in: Quantum Probability, Banach Center Publications, vol. 73, edited by M. Bozejko and W. Mlotkowski and J. Wysoczanski (Polish Academy of Sciences, Inst. Math., 2006), p. 391-408 / math.OA/0502241 at www.arxiv.org.

[1400] M. Skeide, The index of (white) noises and their product system, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 617-655 (2006).

[1401] M. Skeide, A simple proof of the fundamental theorem about Arveson systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 305-314 (2006).

[1402] M. Skeide. Product systems; a survey with commutants in view. 2007. preprint math.OA/0709.0915 at www.arxiv.org.

[1403] M. Skeide, Spatial E0-semigroups are restrictions of inner automorphism groups, in: Quantum Probability and Infinite Dimensional Analysis, Proceedings of the 26th Conference, Quantum Probability and White Noise Analysis, vol. XX, edited by L. Accardi and W. Freudenberg and M. Schürmann (World Scientific, 2007), p. 348-355.

[1404] M. Skeide, Isometric dilations of representations of product systems via commutants, Int. J. Math. 19, 421-539 (2008).

[1405] M. Skeide. E0-semigroups for continuous product systems: the nonunital case. 2009. preprint math.OA/0901.1754 at www.arxiv.org, accepted by Banach J. Math. Anal.

[1406] M. Skeide. Classification of E0-semigroups by product systems. 2009. preprint math.OA/0901.1798 at www.arxiv.org.

[1407] M. Skeide, Unit vectors, Morita equivalence and endomorphisms, Publ. Res. Inst. Math. Sci. 45, 475-518 (2009).

[1408] J. F. Smith, The p-classes of a Hilbert module, Proc. Amer. Math. Soc. 36, 428-434 (1973).

[1409] J. F. Smith, The structure of Hilbert modules, J. London Math. Soc. 8, 741-749 (1974).

[1410] R. R. Smith and D. P. Williams, The decomposition property for C*-algebras, J. Operator Theory 16, 51-74 (1986).

[1411] R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102, 156-175 (1991).

[1412] A. Soffer and L. P. Horwitz, B*-algebra representations in a quaternionic Hilbert module, J. Math. Phys. 24, 2780-2782 (1983).

[1413] B. Solel. Contractive projections onto bimodules of von Neumann algebras. 1990. preprint, Haifa/Israel.

[1414] B. Solel, Operator algebras over C*-correspondences, in: Operator Algebras and Applications, NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, Proceedings of the Aegean Conference on Operator Algebras and Applications, Phytagorio, Samos, Greece, Aug. 19-28, 1996, edited by A. Katavolos (Kluwer Academic Publishers, Dordrecht, 1997), p. 429-448.

[1415] B. Solel, Isometries of Hilbert C*-modules, Trans. Amer. Math. Soc. 353, 4637-4660 (2001).

[1416] B. Solel. Regular dilationsof representations of product systems. 2008. preprint / Math. Proc. Royal Irish Soc. 100784.

[1417] Yu. P. Solovyov and E. V. Troı̋tsky, C*-algebras and Elliptic Operators in Differential Topology (Russian/English) (Faktorial, Moscow, ISBN 5-88688-009-7, 352 p. / revised: Transl. Math. Monographs 192, ISBN 0-8218-1399-4, Amer. Math. Soc., Providence, R.I., 2001, 1996).

[1418] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Memoirs Amer. Math. Soc. 132, no. 627 (1998).

[1419] B. Steinberg. Strong Morita equivalence of inverse semigroups. 2009. preprint math.OA/0901.2696 at www.arxiv.org.

[1420] E. A. Suciu, Spectral resolutions of Hilbert modules over a function algebra, Stud. Cerc. Mat. 49, 429-444 (1997).

[1421] D. Sullivan and B. Weiss and J. D. M. Wright, Generic dynamics and monotone complete C*-algebras, Trans. Amer. Math. Soc. 295, 795-809 (1986).

[1422] Shunhua Sun and Bingren Li, Synthetic techniques in operator theory, Adv. Math., Beijing 17, 225-237 (1988).

[1423] C. Sunouchi, A generalization of Schatten-von Neumann-Dixmier theorem for type I AW*-algebras, Tôhoku Math. J. 23, 727-734 (1971).

[1424] R. G. Swan, Induced representations and projective modules, Ann. Math. 71, 552-578 (1960).

[1425] R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105, 264-277 (1962).

[1426] R. G. Swan, The number of generators of a module, Math. Z. 102, 318-322 (1967).

[1427] R. G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230, 201-234 (1977).

[1428] R. G. Swan, Vector bundles, projective modules and the K-theory of spheres, in: Algebraic Topology and Algebraic K-theory (Princeton Univ. Press, Princeton, NJ, 1987), p. (Ann. of Math. Stud. v.113), pp. 432-522.

[1429] F. H. Szafraniec. Murphy's Positive definite kernels and Hilbert C*-modules reorganized. 2009. preprint math.OA/0906.5408 at www.arxiv.org.

[1430] W. Szymánski, Bimodules for Cuntz-Krieger algebras of infinite matrices, Bull. Austral. Math. Soc. 62, 87-94 (2000).

[1431] Gholamreza Abbaspour Tabadkan and M. Skeide, Generators of dynamical systems of Hilbert modules, Commun. Stoch. Anal. 1, 193-207 (2007).

[1432] A. Taghavi and M. Jafarzadeh, Essential ideals and Finsler modules, Int. Math. Forum 2, 1921-1925 (2007).

[1433] A. O. Takahashi, Fields of Hilbert modules, Ph.D. thesis, Tulane Univ., New Orleans, USA (1971).

[1434] A. O. Takahashi, Hilbert modules and their representations, Rev. Colomb. Mat. 13, 1-38 (1979).

[1435] A. O. Takahashi, A duality between Hilbert modules and fields of Hilbert spaces, Rev. Colomb. Mat. 13, 93-120 (1979).

[1436] H. Takemoto, On a characterization of AW*-modules and a representation of Gelfand type of non-commutative operator algebras, Michigan Math. J. 20, 115-127 (1973).

[1437] H. Takemoto, Decomposable operators in continuous fields of Hilbert spaces, Tôhoku Math. J. 27, 413-435 (1975).

[1438] H. Takemoto, On the weakly continuous constant field of Hilbert space and its application to the reduction theory of von Neumann algebras, Tôhoku Math. Journal 28, 479-496 (1976).

[1439] O. Takenouchi, A non-W*, AW*-factor, Lect. Notes Math. 650, 135-139 (1978).

[1440] M. Takesaki, On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras, Kodai Math. Sem. Reports 12, 1-10 (1960).

[1441] G. Takeuti, Von Neumann algebras and Boolean valued analysis, J. Math. Soc. Japan 35, 1-21 (1983).

[1442] G. Takeuti, C*-algebras and Boolean valued analysis, Japan. J. Math. 9, 207-246 (1983).

[1443] Xiang Tang and A. Weinstein. Quantization and Morita equivalence for constant Dirac structures on tori. 2003. preprint math.OA/0305413 at www.arxiv.org.

[1444] A. Thom. L2-Betti numbers for subfactors. 2006. preprint math.OA/0601408 at www.arxiv.org.

[1445] K. Thomsen, Hilbert C*-modules, KK-theory and C*-extensions, Various Publications Series v.38 (Aarhus Universitet, Matematisk Institut, Aarhus, 1988).

[1446] K. Thomsen, Equivariant K-theory and C*-extensions, K-Theory 19, 219-249 (2000).

[1447] K. Thomsen. Excision in equivariant KK-theory. 2001. preprint, Aarhus University, Aarhus, Denmark.

[1448] Th. Timmermann, Pseudo-multiplicative unitaries and pseudo-Kac systems on C*-modules, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany / preprint no. 394, SFB 478, Univ. Münster (2005).

[1449] Th. Timmermann. C*-pseudo-multiplicative unitaries. 2007. preprint no. 481, SFB 478, Univ. Münster, Germany / preprint math.OA/0709.299 at www.arxiv.org.

[1450] Th. Timmermann. Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families. 2007. to appear in J. Noncommutative Geometry.

[1451] Th. Timmermann. From Hopf C*-families to concrete Hopf C*-bimodules. 2007. preprint math.OA/0712.3695 at www.arxiv.org.

[1452] Th. Timmermann. Finite-dimensional Hopf C*-bimodules and C*-pseudo-multiplicative unitaries. 2007. preprint math.OA/0711.1420 von www.arxiv.org.

[1453] Th. Timmermann, An Invitation to Quantum Groups and Duality: From Hopf Algebras to Multiplicative Unitaries (EMS Publ. House, 2008).

[1454] Th. Timmermann. Compact C*-quantum groupoids. 2008. preprint math.OA/0810.3771 at www.arxiv.org.

[1455] Th. Timmermann. C*-pseudo-multiplicative unitaries and Hopf C*-bimodules. 2009. preprint math.OA/0908.1850 at www.arxiv.org.

[1456] I. G. Todorov, A characterization of Morita equivalence pairs, Glasgow Math. J. 44, 535-545 (2002).

[1457] I. G. Todorov, A characterisation of the normalisers of C*-algebras, Glasgow Math. J. 46, 489-498 (2004).

[1458] M. Tomforde. Contributions to the theory of relative Cuntz-Pimsner algebras. 2002. preprint math.OA/0212277 at www.arxiv.org.

[1459] M. Tomforde, Extensions of graph C*-algebras, Ph.D. thesis, Dartmouth College, Hanover, NH, U.S.A. (2002). www.math.uh.edu/~tomforde/thesis.html.

[1460] M. Tomforde, Simplicity of ultragraph algebras, Indiana Univ. Math. J. 52, 901-925 (2003).

[1461] M. Tomforde, A unified approach to Exel-Laca algebras and C*-algebras associated to graphs, J. Operator Theory 50, 345-368 (2003).

[1462] M. Tomforde, Strong shift equivalence in the C*-algebraic setting: graphs and C*-correspondences, Contemp. Math. 414, 221-230 (2006).

[1463] M. Tomforde, The structure of graph algebbras and generalizations, in: Graph Algebras: Bridging the Gap Between Analysis and Algebra, edited by G. Aranda Pino, F Perera Domenech, M. Siles Molina (Servicio de Publicaciones de la Universidad de Málaga, Spain, 2006).

[1464] A. S. Toms. On the Classification Problem for Nuclear C*-Algebras. 2005. preprint math.OA/0509103 at www.arxiv.org, to appear in Ann. Math. (2).

[1465] A. S. Toms. An infinite family of non-isomorphic C*-algebras with identical K-theory. 2006. preprint math.OA/0609214 at www.arxiv.org.

[1466] A. S. Toms. On the classification problem for nuclear C*-algebras. 2007. preprint.

[1467] A. S. Toms, Stability in the Cuntz semigroup of a commutative C*-algebra, Proc. London Math. Soc. 96, 1-25 (2008).

[1468] J. Tomiyama, Invitation to C*-algebras and Topological Dynamics (World Scientific, Singapore, 1987).

[1469] V. A. Trofimov, Reflexivity of Hilbert modules over the algebra of compact operators with adjoint identity (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no.5, 60-64 / Moscow Univ. Math. Bull. 41(1986), no.5, 51-55 (1986).

[1470] V. A. Trofimov, Reflexivity of Hilbert modules over splittable extensions of the algebra of compact operators (russ.), in: Geometry and the Theory of Singularities in Nonlinear Equations, Voronesh. Gos. Univ. (Voronesh (USSR), 1987), p. pp.164-170.

[1471] V. A. Trofimov, Reflexive and self-dual Hilbert modules over some C*-algebras (russ./engl.), Uspekhi Mat. Nauk 42, 247-248 / Russian Math. Surveys 42(1987), 303-304 (1987).

[1472] V. A. Trofimov, Self-dual and reflexive Hilbert modules over C*-algebras (russ.), in: Bakinskaya mezhdunarodnaya topologiĉeskaya konferenciya, proceedings, part 2 (Baku (USSR), 1987), p. p. 296.

[1473] V. A. Trofimov, The structure of Hilbert modules over topological spaces and over operator algebras (russ.), Ph.D. thesis, Moscow State University ”M. V. Lomonosov” (1987). Moscow (USSR).

[1474] E. V. Troı̋tsky, The index theorem for equivariant C*-elliptical operators (russ.), Dokl. Akad. Nauk USSR 282, 1059-1061 (1985).

[1475] E. V. Troı̋tsky, The representation space of the K-functor related to a C*- algebra (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 1, 96-98 / Moscow Univ. Math. Bull. 40(1985), no. 1, 111-115 (1985).

[1476] E. V. Troı̋tsky, A connection between complex and operator topological equivariant K-theories (russ./engl.), Uspekhi Mat. Nauk 40, 227-228 / Russian Math. Surv. 40(1985), no. 4, 243-244 (1985).

[1477] E. V. Troı̋tsky, A theorem on the index of equivariant C*-elliptical operators (russ./engl.), Dokl. Akad. Nauk USSR 282, 1059-1061 / Russian Math. Surv. 31(1985), 558-560 (1985).

[1478] E. V. Troı̋tsky, Contractability of the full general linear group of the Hilbert C*-module l2(A) (russ./engl.), Funktsional. Anal. i Prilozh. 20:4, 58-64 / Funct. Anal. Appl. 20(1986), 301-307 (1986).

[1479] E. V. Troı̋tsky, An equivariant index theorem with C*-elliptic operators (russ./engl.), Izv. Akad. Nauk SSSR, Ser. Mat. 50, 849-865 / Math. USSR - Izv. 29(1986), 207-224 (1986).

[1480] E. V. Troı̋tsky, Homotopic triviality of the general linear group of a Hilbert module (russ.), in: Geometry, Differential Equations and Mechanics, edited by V. V. Kozlov and A. T. Fomenko (Moscow State Univ., Mekh.-Mat. Fakulty, Moscow, 1986), p. pp. 128-134.

[1481] E. V. Troı̋tsky, The index of equivariant elliptic operators over C*-algebras, Annals Global Anal. Geom. 5, 3-22 (1987).

[1482] E. V. Troı̋tsky, An exact K-cohomology C*-index formula, I: Thom isomorphism and topological index (russ./engl.), Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 2, 83-85 / Moscow Univ. Math. Bull. 43(1988), no. 2, 57-60 (1988).

[1483] E. V. Troı̋tsky, An exact K-cohomology C*-index formula, II: An index theorem and its applications (russ./engl.), Uspekhi Mat. Nauk 44, 213-214 / Russian Math. Surv. 44(1989), 259-261 (1989).

[1484] E. V. Troı̋tsky, Lefschetz numbers of C*-complexes, Lect. Notes Math. 1474, 193-206 (1991).

[1485] E. V. Troı̋tsky, An exact formula for the index of an equivariant C*-elliptic operator (russ./engl.), Tr. Mat. Inst. Steklova 193, 178-182 / Proc. Steklov Inst. Math. 193(1993), no. 3, 197-201 (1992).

[1486] E. V. Troı̋tsky, Traces, C*-elliptic complexes and higher even cyclic homology, Vestn. Mosk. Univ., Ser. I: Mat.-Mekh. no. 5, 36-39 / Moscow Univ. Math. Bull. 48(1993), no. 5, 34-37 (1993).

[1487] E. V. Troı̋tsky, An averaging theorem in Hilbert C*-modules and operators possessing an adjoint (russ./engl.), Funktsional. Anal. i Prilozh. 28:3, 88-92 / Funct. Anal. Appl. 28(1994), no. 3, 220-223. (1994).

[1488] E. V. Troı̋tsky. Operators without adjoint and Kuiper's theorem for Hilbert modules. 1995. Universität Heidelberg, Mathematisches Institut, preprint series of Forschergruppe ”Topologie und Nichtkommutative Geometrie”, no. 113, Februar.

[1489] E. V. Troı̋tsky, Orthogonal complements and endomorphisms of Hilbert modules and C*-elliptical complexes, in: Novikov Conjectures, Index Theorems and Rigity, London Math. Soc. Lecture Note Series 226, vol. 2, edited by S. C. Ferry and A. Ranicki and J. Rosenberg (1996), p. 309-331.

[1490] E. V. Troı̋tsky. Kuiper's theorem for Hilbert modules: the general case. 1996. Max-Planck-Institut für Math., Bonn, preprint MPI 96-16.

[1491] E. V. Troı̋tsky. Properties of A-functionals on l2(A) and homotopic properties of the full general A-linear group GL(l2(A)) for a functional C*-algebra A (Russ.). 1996. Abstracts of the Int. Conf. ’Functional Spaces, Differential Operators, Problems of Mathematical Education’, dedicated to the 75th birthday of L. D. Kudrivtsev, Moscow, p. 63.

[1492] E. V. Troı̋tsky, Compact group actions on Hilbert modules and C*-elliptic complexes, in: Tensor and Vector Analysis, edited by A. T. Fomenko and O. V. Manturov and V. V. Trofimov (Gordon and Breach Sci. Publ., Amsterdam, 1998), p. 251-281.

[1493] E. V. Troı̋tsky, Geometry and topology of operators on Hilbert C*-modules, Functional Analysis 6, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., v. 53, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow, ed.: A. Ya. Khelemskii / J. Math. Sci. 98(2000), 245-290 (1998).

[1494] E. V. Troı̋tsky, Functionals on l2(A), and theorems of Kuiper and Dixmier-Douady type for Hilbert C*-modules (Russ./Engl.), Trudy Mat. Inst. im. V. A. Steklova 225, 362-380 / Proc. Steklov Inst. Math. 225(1999), 344-362 (1999).

[1495] E. V. Troı̋tsky. Partially positive square root and Kuiper type theorem for operators on Hilbert C*-modules. 2000. preprint MPIM-2000-110, Max-Planck-Institut für Mathematik, Bonn, Germany.

[1496] E. V. Troı̋tsky, Geometry and topology of operators on Hilbert C*-modules, Functional analysis, 6. J. Math. Sci. (New York) 98, 245-290 (2000).

[1497] E. V. Troı̋tsky, Actions of compact groups, C*-index theorem, and families, in: Pontryagin Conference, 8, Topology (Moscow, 1998), J. Math. Sci. (New York) 105 (2001), p. no. 2, 1884-1923.

[1498] E. V. Troı̋tsky, Discrete group actions and corresponding modules, Proc. Amer. Math. Soc. 131, 3411-3422 (2003).

[1499] J. Trout, Asymptotic morphisms and elliptic operators over C*-algebras, K-theory 18, 277-315 (1999).

[1500] J. Trout, On graded K-theory, elliptic operators and the functional calculus, Illinois J. Math. 44, 294-309 (2000).

[1501] B. Truong-Van, Une généralisation du théorème de Kolmogorov-Aronszajn. Processus V-bornés q-dimensionelles: domaine spectral, Ann. Inst. Henri Poincaré 17, 31-49 (1981).

[1502] Sze-Kai Tsui, Completely positive module maps and completely positive extreme maps, Proc. Amer. Math. Soc. 124, 437-445 (1996).

[1503] Sze-Kai Tsui, Hilbert C*-modules: a usefull tool, Taiwanese J. Math. 1, no. 2, 111-126 (1997).

[1504] Sze-Kai Tsui. Representations of Hilbert C*-bimodules and Kasparov's stabilization theorem. 2000. preprint, Oakland University, Rochester, MI, U.S.A.

[1505] J.-L. Tu, Non-Hausdorff groupoids, proper actions and K-theory, Doc. Math. 9, 565-597 (2004).

[1506] J. Tyler, Every AF-algebra is Morita equivalent to a graph algebra, Bull. Austral. Math. Soc. 69, 237-240 (2004).

[1507] H. Umegaki, Positive definite function and a direct product Hilbert space, Tôhoku Math. J. 7, 206-211 (1955).

[1508] S. Vaes, A new approach to induction and imprimitivity results, J. Funct. Anal. 229, 317-374 (2005).

[1509] J. Varela, Sectional representations of Banach modules, Math. Z. 139, 55-61 (1974).

[1510] A. Varela. Geometry on state and weight orbits. 2000. preprint at www.iam.conicet.ar/PDF/267.pdf.

[1511] J. C. Várilly, An Introduction to Noncommutative Geometry, EMS Series of Lectures in Math. (Europ. Math. Soc. (EMS), 2006), p. 121 pp.

[1512] R. Vergnioux, K-théorie équivariante et opérateur de Julg-Valette pour les groupes quantiques, Ph.D. thesis, Université Paris 7 - Denis Diderot, UFR des Mathématiques, Paris, France (2002).

[1513] R. Vergnioux, K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal. 212, 206-221 (2004).

[1514] E. Vasselli. Crossed products of C(X)-algebras by endomorphisms and C(X)-categories. 2001. preprint math.OA/0112074 at www.arxiv.org.

[1515] E. Vasselli, Continuous fields of C*-algebras arising from extensions of tensor C*-categories, J. Funct. Anal. 199, 122-152 (2003).

[1516] E. Vasselli. Crossed products by endomorphisms, vector bundles and group duality. 2003. preprint math.OA/0301214 at www.arxiv.org.

[1517] E. Vasselli, The C*-algebra of a vector bundle and fields of Cuntz algebras, J. Funct. Anal. 222, 491-502 (2005).

[1518] E. Vasselli, Bundles of C*-algebras and the KK(X,-,-)-bifunctor, in: C*-algebras and Elliptic Theory, Trends Math. (Birkhäuser, Basel, 2006), p. 313-327.

[1519] E. Vasselli. Gauge-invariant Hilbert bimodules and crossed products by endomorphisms. 2007. preprint math.OA/0705.2933 at www.arxiv.org.

[1520] E. Vasselli. Bundles of C*-categories, II: C*-dynamical systems und Dixmier-Douady invariants. 2008. preprint math.OA/0806.2520 at www.arxiv.org.

[1521] S. Vassout, Feuilletages et résidu non commutatif longitudinal, Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, Paris, France (2001).

[1522] S. Vassout, Unbounded pseudodifferential calculus on Lie groupoids, J. Funct. Anal. ???, ??? (???).

[1523] G. Vincent-Smith, The Hahn-Banach theorem for modules, Proc. London Math. Soc. 17, 72-90 (1967).

[1524] M. Vlasenko. The graded ring of quantum Theta functions for noncommutative torus with real multiplication. 2008. preprint, www.imath.kiev.ua, to appaer in International Mathematical Research Notices, volume 2006.

[1525] Ch. Wahl. Noncommutative Maslov index and eta forms. 2003. preprint math.KT/0309323 at www.arxiv.org, based on the authors Ph.D. thesis at Universität Göttingen, Germany, 2002.

[1526] Ch. Wahl. Homological index formulas for elliptic operators over C*-algebras. 2006. preprint math.KT/0603694 at www.arxiv.org.

[1527] Ch. Wahl. Spectral flow and winding number in von Neumann algebras. 2006. preprint math.OA/0608030 at www.arxiv.org.

[1528] Ch. Wahl. Index theory for actions of compact Lie groups on C*-algebras. 2007. preprint math.OA/0707.3207 at www.arxiv.org.

[1529] Ch. Wahl, Noncommutative Maslov index and eta-forms, Memoirs Amer. Math. Soc. 189(887), 118 pp (2007).

[1530] Ch. Wahl, On the noncommutative spectral flow, J. Ramanujan Math. Soc. 22, 135-187 (2007).

[1531] S. Waldmann. States and representations in deformation quantization. 2004. math.QA/0408217 at www.arxiv.org.

[1532] S. Waldmann, The Picard groupoid in deformation quantization, Lett. Math. Phys. 69, 223-235 (2004).

[1533] S. G. Walters, Strong Morita equivalence for the quasi-rotation C*-algebra, J. Operator Theory 31, 327-349 (1994).

[1534] S. G. Walters, Projective modules over the non-commutative sphere, J. London Math. Soc. (2) 51, 589-602 (1995).

[1535] S. Walters, On Fourier orthogonal projections in the rotation algebra, J. London Math. Soc. (2) 68, 193-205 (2003).

[1536] S. Walters, Periodic integral transforms and C*-algebras, C. R. Math. Acad. Sci. Soc. R. Can., 55-61 (2004).

[1537] X. Wang, The C*-algebras of a Class of Solvable Lie Groups, Pitman Res. Notes Math. v.199 (Longman Scientific, Harlow, 1989).

[1538] Y. Watatani, Index for C*-subalgebras, Memoirs Amer. Math. Soc. 424, (1990).

[1539] N. Weaver. Full C*-dynamical systems. 1995. preprint, Univ. of California at Santa Barbara, U.S.A.

[1540] N. Weaver, Deformations of von Neumann algebras, J. Operator Theory 35, 223-239 (1996).

[1541] N. Weaver, Deformation Quantization for Hilbert space actions, Commun. Math. Phys. 188, 217-232 (1997).

[1542] N. Weaver, Hilbert bimodules with involution, Canad. Math. Bull. 44, 355-369 (2001).

[1543] N. Weaver, Mathematical Quantization, Studies in Advanced Mathematics (Chapman & Hall / CRC, Boca Raton, FL, USA, 2001).

[1544] C. Webster, On unbounded operators affiliated with C*-algebras, J. Operator Theory 51, 237-244 (2004).

[1545] N. E. Wegge-Olsen. Introduction to operator algebra K-theory and generalized index theory. preprints no.1a+1b, Københavns Univ., Matematisk Institut, 1989.

[1546] N. E. Wegge-Olsen, K-theory and C*-algebras - a friendly approach (Oxford University Press, Oxford, 1993).

[1547] Chr. Wegner. L2-invariants of finite aspherical CW-complexes. 2008. preprint math.GT/0805.4150 at www.arxiv.org.

[1548] J. Weidner, Topological invariants for generalized operator algebras, Ph.D. thesis, Univ. Heidelberg, Heidelberg, FRG (1987).

[1549] J. Weidner, KK-groups for generalized operator algebras,I, K-Theory 3, 57-77 (1989).

[1550] J. Weidner, KK-groups for generalized operator algebras,II, K-Theory 3, 79-98 (1989).

[1551] W. Werner, On a class of Hilbert C*-manifolds, in: K-Theory and Noncommutative eometry, EMS Series of congress Reports, vol. v. 2 (2008), p. ???.

[1552] W. Werner. A note on morphisms for Hilbert C*-manifolds. 2008. preprint, SFB 478 - Geometrische Strukturen in der Mathematik, Universität Münster, Germany, Heft 495.

[1553] W. Werner. Hilbert C*-manifolds with Levi-Civitá connection. 2008. preprint, Universität Münster, Germany.

[1554] H. Widom, Embedding in algebras of type I, Duke Math. J. 23, 309-324 (1956).

[1555] N. Wiener and P. Masani, The prediction theory of multivariable stochastic processes, I. The regularity condition, Acta Math. 98, 111-150 (1957).

[1556] N. Wiener and P. Masani, The prediction theory of multivariable stochastic processes, II. The linear predictor, Acta Math. 99, 93-137 (1958).

[1557] A. W. Wickstead, Stone-algebra-valued measures: Integration of vector-valued functions and Radon-Nikodym type theorems, Proc. Lond. Math. Soc., III. Ser. 45, 193-226 (1982).

[1558] D. P. Williams, Crossed Products of C*-Algebras, Math. Surveys and Monographs v. 134 (Amer. Math. Soc., Providence, Rh.I., 2007).

[1559] G. Wittstock, Ein operatorwertiger Hahn-Banach-Satz, J. Funct. Anal. 40, 127-150 (1981).

[1560] G. Wittstock, Extensions of completely bounded C*-module homomorphisms, in: Operator Algebras and Group Representations, II, (Monographs and Studies in Math. v.18), Proc. Int. Conf. Neptun(Rom.), 1980 (Pitman Adv. Publishing Progr., Boston, 1984), p. pp. ?.

[1561] G. Wittstock and H. Hofmeier, A bicommutant theorem for completely bounded module homomorphisms, Math. Ann. 308, 141-154 (1997).

[1562] P. J. Wood. Wavelets and projective Hilbert modules. 2001. preprint, Flinders University, Adelaide, Australia / submitted to J. Fourier Anal. Appl.

[1563] P. J. Wood, Wavelets and C*-algebras, Ph.D. thesis, The Flinders University of South Australia, Adelaide, Australia (Sept. 2003).

[1564] P. J. Wood, Wavelets and Hilbert modules, J. Fourier Anal. Appl. 10, 573-598 (2004).

[1565] S. L. Woronowicz, Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Commun. Math. Phys. 136, 399-432 (1991).

[1566] S. L. Woronowicz and K. Napiórkowski, Operator theory in the C*-algebra framework, Rep. Math. Phys. 31, 353-371 (1992).

[1567] J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19, 107-122 (1969).

[1568] J. D. M. Wright, A spectral theorem for normal operators an a Kaplansky-Hilbert module, Proc. London Math. Soc. 19, 258-268 (1969).

[1569] J. D. M. Wright, On minimal σ-completions of C*-algebras, Bull. London Math. Soc. 6, 168-174 (1974).

[1570] J. D. M. Wright, Regular σ-completions of C*-algebras, J. London Math. Soc. 12, 299-309 (1976).

[1571] J. D. M. Wright, Wild AW*-factors and Kaplansky-Rickart algebras, J. London Math. Soc. 13, 83-89 (1976).

[1572] J. D. M. Wright, On AW*-algebras of finite type, J. London Math. Soc. 12, 431-439 (1976).

[1573] J. D. M. Wright, Normal AW*-algebras, Proc. Royal Soc. Edinburgh 85A, 137-141 (1980).

[1574] J. D. M. Wright, On some problems of Kaplansky in the theory of rings of operators, Math. Zeitschr. 172, 131-141 (1980).

[1575] J. D. M. Wright, Hyperfiniteness in wild factors, J. London Math. Soc. 38, 492-502 (1988).

[1576] J. D. M. Wright, Paradoxical decompositions of the cube and injectivity, Bull. London Math. Soc. 22, 18-24 (1990).

[1577] Fangbin Wu, The higher Γ-index for coverings of manifolds with boundaries, in: Cyclic Cohomology and Noncommutative Geometry (Waterloo, Ontario, 1995), Fields Inst. Commun. 17 (Amer. Math. Soc., 1997), p. 169-183.

[1578] P. Xu, Morita equivalent symplectic groupoids, in: Symplectic Geometry, Groupoids and Integrable Systems (Berkeley, CA, 1989) (Springer-Verlag, New York, 1991), p. (Math. Sci. Res. Inst. Publ. v. 20).

[1579] P. Xu, Morita equivalence and symplectic realizations of Poisson manifolds, Ann. Sci. Ec. Norm. Super., Iv. Ser. 25, 307-333 (1992).

[1580] Quanhua Xu, Interpolation of operator spaces, J. Funct. Anal. 139, 500-539 (1996).

[1581] Quanhua Xu, Remarks on interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 191-198 (2000).

[1582] Qingxiang Xu. On the representations of the Moore-Penrose inverses of partioned adjointable operators on Hilbert C*-modules. 2007. preprint, Shanghai Normal University, P. R. China.

[1583] Qingxiang Xu. Reverse order law of the weighted Moore-Penrose inverse of adjointable operators on Hilbert C*-modules. 2007. preprint, Shanghai Normal University, P. R. China.

[1584] Qingxiang Xu and Lijuan Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Lin. Algebra Appl. 428, 992-1000 (2008).

[1585] Qingxiang Xu, Common hermitian and positive solutions of the adjointable operator equations AX=C, XB=D, Lin. Algebra Appl. ???, ??? (2008).

[1586] Qingxiang Xu and Lijuan Sheng and Yangyang Gu. The solution to some operator equation. 2008. preprint, Dept. Maths., Shanghai Normal University, Shanghai, China 7 to appear in Linear Algebra Appl.

[1587] Qingxiang Xu, Moore-Penrose inverses of partitioned adjointable operators on Hilbert C*-modules, Lin. Algebra Appl. 430, 2929-2942 (2009).

[1588] Qingxiang Xu and Yimin Wei and Yangyang Gu, Sharp norm-estimations for Moore-Penrose inverses of stable perturbations of Hilbert C*-module operators, SIAM J. Num. Anal. ???, ??? (2009).

[1589] Zhou Tian Xu, Hilbert C*-modules and C*-algebras, I (Engl./Chin.), J. Nanjing University, Mathematical Biquarterly 13, 101-108 (1996).

[1590] Zhou Tian Xu and Tao Cai and Bing Zhao Li, Injective envelopes of a Hilbert C*-module (Engl.), J. Beijing Inst. Tech. 10, no. 2, 119-124 (2001).

[1591] S. Yamagami, A note on Hilbert C*-modules associated with a foliation, Publ. Res. Inst. Math. Sci. 20, 97-106 (1984).

[1592] S. Yamagami, Modular theory for bimodules, J. Funct. Anal. 125, 327-357 (1994).

[1593] Shinji Yamashita. Circle correspondence C*-algebras. 2008. preprint math.OA/0808.1403 at www.arxiv.org.

[1594] Youngoh Yang, A note on the numerical range of an operator, Bull. Korean Math. Soc. 21, 27-30 (1984).

[1595] Youngoh Yang, Numerical ranges of operators on Hilbert C*-modules, Bull. Korean Math. Soc. 24, no. 1, p. 52 (Abstract of thesis) (1987).

[1596] Xi-Yan Yao, A survey of development for frame theory in wavelet analysis (Chin.), Journal of Yuncheng University 23, no. 5, 7-9 (2005).

[1597] Xi-Yan Yao, Characterization of a canonical frame in a Hilbert C*-module H (Chin.), Journal of the North University of China (Natural Science Edition) 27, no. 2, 168-170 (2006).

[1598] T. Yeend, Topological higher-rank graphs and the C*-algebras of topological 1-graphs, Contemp. Math. 414, 231-244 (2006).

[1599] Ti Yen, Trace on finite AW*-algebras, Duke Math. J. 22, 207-222 (1955).

[1600] Inhyeop Yi. K-theory and K-homology of C*-algebras of row-finite graphs. 2002. preprint, Univ. of Victoria, Victoria, B.C., Canada.

[1601] Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert spaces, Invent. Math. 139, 201-240 (2000).

[1602] J. Zacharias, Quasi-free automorphisms of Cuntz-Krieger-Pimsner algebras, in: C*-algebras (Münster, 1999), Springer, Berlin (2000), p. 262-272.

[1603] B. Zalar, Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space, Acta Math. Hungar. 69, 301-325 (1995).

[1604] R. Zekri, A new description of Kasparov's theory of C*-algebra extensions, J. Func. Anal. 84, 441-471 (1989).

[1605] G. Zeller-Meier. Some so far apparently unnoticed remarks on Hilbert C*-modules. Oberwolfach, Tagungsbericht 43/1987, pp.16-17.

[1606] G. Zeller-Meier. Some remarks about C*-Hilbert spaces and Hilbert C*-modules. preprint, Marseille, 1991.

[1607] G. Zeller-Meier. Noyaux positifs a valeurs dans une C*-algebre. preprint, Marseille, 1991.

[1608] H. H. Zettl, Strong Morita equivalence of C*-algebras preserves nuclearity, Arch. Math. 38, 448-452 (1982).

[1609] H. H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of C*-algebras, Arch. Math. 39, 69-77 (1982).

[1610] H. H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48, 117-143 (1983).

[1611] Chun Zhang, Completely bounded Banach-Mazur distance, Proc. Edinburgh Math. Soc. (2) 40, 247-260 (1997).

[1612] Lun Chuan Zhang. The theorem of factor decomposition of certain Hilbert C*-module maps. 2000. Inst. Math., Academica Sinica, Beijing, P.R. China.

[1613] Lun Chuan Zhang, Complemented Hilbert C*-modules and bounded module maps (Chinese, English summary), Adv. Math. (China) 31, 275-278 (2002).

[1614] Lun Chuan Zhang, The characterization of bounded generalized inverse module maps and applications to C*-algebra factor decompositions, in: ICM2002, Abstracts of Short Communications and Poster Sessions (Higher Education Press, Beijing, 2002), p. 164-165.

[1615] Lun Chuan Zhang, Bounded Hilbert C*-module maps (Chinese), Advance in Math. 31, no. 3, 275-278 (2002).

[1616] Lun Chuan Zhang, Isomorphism theorems between Hilbert C*-modules, Acta. Anal. Funct. Appl 5, no. 3, 210-212 (2003).

[1617] Lun Chuan Zhang, The proof of inseparable prime AW*-algebras being primitive C*-algebras, Acta Math. Sin. (Engl. Ser.) 19, 413-416 (2003).

[1618] Lun Chuan Zhang, Complemented closed submodules and bounded generalized inverse module maps (Chinese), Math. Practice Theory 34, no. 2, 143-146 (2004).

[1619] Lun Chuan Zhang, A relation theorem for hereditary C*-subalgebras and complemented submodules (Chinese), Acta Math. Sinica (Chin. Ser.) 47, no. 4, 747-750 (2004).

[1620] Lun Chuan Zhang, The Morita equivalence theorem in C*-bundles, Acta Anal. Funct. Appl. 6, no. 1, 52-55 (2004).

[1621] Lun Chuan Zhang, The relationship of hereditary C*-subalgebras and complemented submodules (English, Chinese summary), Nanjing Daxue Xuebao Shuxue Bannian Kan 21, 1-4 (2004).

[1622] Lun Chuan Zhang, The characterization of bounded generalized inverse module maps and application (Chinese), Acta Math. Sinica (Chin. Ser.) 49, no. 1, 7-10 (2006).

[1623] Lun Chuan Zhang, The factor decomposition theorem of bounded generalized inverse module maps, Acta Math. Sinica (Engl. Ser.) 27, 1413-1418 (2007).

[1624] Lun Chuan Zhang, The characterization of Moore-Penrose inverse module maps and their continuity, Rocky Mountains J. Math. ???, ??? (2007).

[1625] Lun Chuan Zhang and Guo Maozheng, A Stone-type theorem (Chinese), Acta Math. Sinica (Chin. Ser.) 50, 857-860 (2007).

[1626] Lun Chuan Zhang, The characterization of Moore-Penrose inverse module maps and their continuity, Rocky Mountain J. Math. 38, 351-357 (2008).

[1627] Lun Chuan Zhang and Guo Maozheng, Theory of semigroups on Hilbert C*-modules, J. of Systems Science and Complexity ???, ??? (2008).

[1628] Lun Chuan Zhang and Guo Maozheng. Unitary equivalent submodules and corresponding hereditary C*-subalgebras. 2009. preprint, Renmin University of China and Peking University, Peking, P.R. China.

[1629] Shuang Zhang, On the structure of multiplier algebras, Ph.D. thesis, Purdue University, West Lafayette, U.S.A. (1988).

[1630] Shuang Zhang, Stable isomorphisms of hereditary C*-subalgebras and stable equivalence of open projections, Proc. Amer. Math. Soc. 105, 677-682 (1989).

[1631] Shuang Zhang, Diagonalizing projections in multiplier algebras and in matrices over a C*-algebra, Pacific J. Math. 145, 181-200 (1990).

[1632] Shuang Zhang, Ideals of generalized Calkin algebras, Contemp. Math. 120, 193-198 (1991).

[1633] Shuang Zhang, Problems on C*-algebras of real rank zero and their multiplier algebras, Contemp. Math. 120, 199-203 (1991).

[1634] Shuang Zhang, K1-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325, 793-818 (1991).

[1635] Shuang Zhang. K-theory, K-skeleton factorizations and bi-variable index Index(x,p), (I,II,III). 1991. preprint.

[1636] Shuang Zhang. On the homotopy type of the unitary group and the Grasmann space of purely infinite simple C*-algebras. 1991. preprint.

[1637] Shuang Zhang. Rectifiable diameters of the Grasmann spaces of von Neumann algebras and certain C*-algebras. 1991. preprint.

[1638] Shuang Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebras, I, Pacific J. Math. 155, 169-197 (1992).

[1639] Shuang Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebras, II, K-Theory 6, 1-27 (1992).

[1640] Shuang Zhang, On the exponential rank and exponential length of C*-algebras, J. Operator Theory 28, 337-355 (1992).

[1641] Shuang Zhang. Torsion of K-theory; bi-variable index and certain invariants of the essential commutant of Mn(C), (I,II). 1992. preprint.

[1642] Shuang Zhang, Exponential rank and exponential length of operators on Hilbert C*-modules, Annals Math. 137, 129-144 (1993).

[1643] Shuang Zhang, Factorizations of invertible operators and K-theory of C*-algebras, Bull. Amer. Math. Soc. 28, 75-83 (1993).

[1644] Shuang Zhang, K-theory and a bivariable Fredholm index, Contemp. Math. 148, 155-190 (1993).

[1645] Shuang Zhang, K-theory and homotopy of certain groups and infinite Grassmann spaces associated with C*-algebras, Int. J. Math. 5, 425-445 (1994).

[1646] Shuang Zhang, Rectifiable diameters of the Grassmann spaces of certain von Neumann algebras and C*-algebras, Pacific J. Math. 177, 377-398 (1997).

[1647] G. Zimmermann, Projective multiresolution analysis and generalized sampling, Ph.D. thesis, Univ. of Maryland at College Park, USA (1994).

[1648] O. Zuchanke, Erste Aspekte zur Vorhersagetheorie stationärer Folgen in Hilbertmoduln, Master thesis, Univ. Leipzig, Leipzig, F.R.G. (1997). 300 pp.

[1649] Collection. Hilbert C*-modules and Groupoid C*-algebras (Japan.). 1999. Proc. of a symposium held at RIMS, Kyoto, Jan. 25-27, 1999, Research Institute for Mathematical Sciences, Kyoto University, Sūrikaisekikenkyūsho Kōkyūroku, v. 1110, 103 pp., Kyoto University, RIMS, Kyoto.

This page was generated using Rogge's BibTeX-to-XML Converter. [top]